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Humans can leverage physical interaction to teach robot arms. This physical interaction takes multiple forms depending on

the task, the user, and what the robot has learned so far. State-of-the-art approaches focus on learning from a single modality,

or combine some interaction types. Some methods do so by assuming that the robot has prior information about the features

of the task and the reward structure. By contrast, in this paper we introduce an algorithmic formalism that unites learning

from demonstrations, corrections, and preferences. Our approach makes no assumptions about the tasks the human wants to

teach the robot; instead, we learn a reward model from scratch by comparing the human’s input to nearby alternatives, i.e.,

trajectories close to the human’s feedback. We irst derive a loss function that trains an ensemble of reward models to match

the human’s demonstrations, corrections, and preferences. The type and order of feedback is up to the human teacher: we

enable the robot to collect this feedback passively or actively. We then apply constrained optimization to convert our learned

reward into a desired robot trajectory. Through simulations and a user study we demonstrate that our proposed approach

more accurately learns manipulation tasks from physical human interaction than existing baselines, particularly when the

robot is faced with new or unexpected objectives. Videos of our user study are available at: https://youtu.be/FSUJsTYvEKU

Additional Key Words and Phrases: Physical human-robot interaction, reward learning, learning from multimodal feedback,

imitation learning

1 INTRODUCTION

Imagine teaching a robot arm on a factory loor (see Figure 1). You knowwhat task youwant the robot to performÐ

attaching a chair leg Ð but you do not know how to program the robot to perform this task. Instead, you physically

interact with the robot. Perhaps you start by kinesthetically guiding the robot across a full demonstration of the

task. Next you deploy the robot, and notice it is attaching the chair leg at the wrong angle: here you physically

intervene and correct just that part of the arm’s motion. Finally, as the robot gets closer to understanding your

task, you might rank the robot’s behavior, indicating times where it gets it right and times where it messes up.

Throughout this process it does not make sense for you to be constrained to only a single type of interaction (e.g.,

only ever showing demonstrations of the task). Instead, you should be able to exploit all the avenues of physical

human-robot interaction to convey your intent.

As robots increasingly share spaces with human partners, physical interaction between humans and robots

becomes inevitable. Within this paper we focus on robot arms that perform manipulation tasks. Here we can

harness physical interaction as a channel for communication; when the human kinesthetically guides a robot arm

throughout their desired task, the human is providing a demonstration; when the human pushes, pulls, or twists

the robot to ix a part of its motion, the human is showing a correction; and when the human physically observes

the robot and ranks its performance, the human is indicating their preference. Demonstrations, corrections, and

preferences all communicate information about how the human wants the robot to behave. But we recognize that

these modalities provide diferent Ð and often complementary Ð types of information: demonstrations provide an
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Fig. 1. Human teaching a robot arm to assemble a chair. The robot does not have any prior information about this task,

and must learn from the human’s physical interactions. We recognize that these interactions can take multiple diferent

forms, including demonstrations, corrections, and preferences. To unify each type of input under a single framework, we

train a reward model to assign higher scores to the human’s behavior (�� ) than to nearby alternatives (��). The robot then

optimizes this reward model to find its desired trajectory.

outline of the high-level task, corrections hone-in on ine-grained aspects of the robot’s motion, and preferences

provide a ranked comparison between various repetitions of the same task. The right type of interaction (e.g.,

demonstration, correction, or preference) depends on the task, the user, and what the robot has learned so far.

Recent research on physical human-robot interaction develops separate approaches for each type of human

feedback. Robot arms can learn manipulation tasks only from demonstrations [3], only from corrections [32],

or only from preferences [23]. Moving beyond physical human-robot interaction, there is also work that unites

combinations of these data sources: for instance, learning from demonstrations and preferences [4, 7, 9, 22, 49],

or from demonstrations and corrections [20, 26, 42, 47]. But to learn from multiple sources of human feedback

the robot must either (a) have prior information about the tasks the human has in mind [4, 24] or (b) apply

reinforcement learning to identify the optimal trajectory [7, 9, 10, 22, 49]. These constraints present practical

challenges during physical human-robot interaction: intuitively, we seek robots that learn new and unexpected

tasks in real-time, without stopping to perform reinforcement learning through trial and error.

In this paper we propose a formalism for learning from physical interaction that unites demonstrations,

corrections, and preferences. We recognize that these diferent types of interactions provide diferent types of

data about the human’s desired task. To ground each feedback type within the same learning framework, our

hypothesis is that:

We can unite physical demonstrations, corrections, and preferences under a single framework to learn a reward model

that assigns higher scores to the human’s input trajectories as compared to any modiied alternatives.

Applying this insight we develop a two-step algorithm. First, we observe the human’s physical interactions with

the robot and learn a reward model from scratch. Second, we exploit the underlying structure of manipulation

tasks by applying constrained optimization to map the learned reward into a robot trajectory. This process is

iterative and free-form: at every iteration the human can provide demonstrations, corrections, or preferences,

and the robot updates its reward model and identiies an optimal trajectory in real-time. We emphasize that the

reward model is a neural network that does not require any a priori knowledge about the human’s potential

rewards, and thus the current user is able to teach the robot arbitrary manipulation tasks. Returning to our
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running example, imagine that the robot has never assembled a chair before: but because the robot learns from

the human’s feedback to assign higher rewards to states where the chair legs are upright, the robot solves for a

desired trajectory that carries the legs vertically.

Overall, we make the following contributions to physical human-robot interaction:

Uniting Physical Interactions. We present a learning approach to physical interaction that uniies demonstra-

tions, corrections, and preferences. Our approach is based on the insight that the human’s inputs are better than

the alternatives: e.g., the human’s demonstrated trajectory should receive higher reward than noisy perturbations

of that same trajectory. Our learning approach automatically generates trajectory deformations of the human’s

physical interactions, and then learns to assign higher rewards to the human’s actual behavior.

A Flexible Reward Learning Framework.We incorporate learning from both active and passive sources of

feedback into a lexible reward learning framework. In a setting where the human may use multiple forms of

feedback to teach the robot, we also enable the robot to actively prompt the human by eliciting their preferences.

We identify a method for generating preference trajectories that Ð when ranked by the human Ð minimizes

the robot’s uncertainty over its learned reward. This approach results in an end-to-end model of the human’s

reward function. We then harness of-the-shelf optimization techniques and the robot’s underlying kinematics to

convert this learned reward function into a desired robot trajectory.

Comparing to Baselines. We compare our approach to state-of-the-art baselines across experiments with

real robot arms and simulated and real human users. First, we consider approaches for physical human-robot

interaction that learn from either demonstrations and corrections or demonstrations and preferences, and show

that our method more accurately learns the human’s task (particularly when this task is new or unexpected).

Second, we perform a user study with imitation learning baselines that synthesize multiple forms of human

feedback. Here we show that participants prefer working with robots that learn using our approach, and that our

approach learns trajectories that better align with the human’s intended tasks. Readers can ind videos of our

experimental setup and user study at: https://youtu.be/FSUJsTYvEKU

2 RELATED WORK

This paper introduces a learning formalism for physical human-robot interaction. During physical interaction the

human can kinesthetically guide the robot throughout examples of the task (demonstrations), apply forces and

torques to adjust segments of the robot’s motion (corrections), and rank the robot trajectories that they observe

(preferences). Our approach seeks to unite demonstrations, corrections, and preferences into a real-time learning

algorithm. To enable safe and seamless human-robot interaction, we irst take advantage of prior research on

shared control. We then review two related topics from the existing literature: (a) learning methods designed

speciically for physical human-robot interaction and (b) approaches outside of physical interaction that learn a

reward function from multiple sources of human feedback.

Control Responses for Physical Interaction. Although we will focus on learning, we recognize that prior

research has also explored control theoretic responses to physical interaction [12, 16, 17, 19, 31, 33, 38, 39]. Works

on impedance control and shared control arbitrate leader-and-follower roles between the human and robot:

when the human intervenes and applies large forces to the robot, the robot reduces its control feedback so that

the human backdrives the arm. Intuitively, the robot can also pause, move away from the human, or follow the

human’s motion during physical interaction [16]. These control responses are an important step towards safety,

and we will leverage shared control throughout this paper to enable close physical interaction.

Learning Rewards during Physical Interaction. Recent work has enabled robots to learn from physical

human-robot interaction [3]. Here the human physically pushes, pulls, and twists the robot arm, and the robot

attempts to infer why the human is applying these forces so that it can update its behavior accordingly. Some

works directly map the human’s forces and torques to changes in the robot’s desired trajectory [2, 18, 27, 35]. But
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more relevant here is research that infers a reward function from physical interaction: these approaches assume

that the human has in mind an objective, and the human’s interactions are observations of this latent reward

function [1, 40, 41]. The learned reward is then used to identify the robot’s desired trajectory.

In practice, these approaches often take advantage of physical human corrections [6, 23, 25, 30, 32, 48]. Using

the insight that the human’s applied forces and torques are an intentional improvement Ð i.e., the human is going

out of their way to show the robot a better way to perform the task Ð the robot learns to give the human’s behavior

higher rewards and propagate those changes the next time the robot repeats this task. In this paper we leverage a

similar insight to derive our learning algorithm. However, while prior works for physical human-robot interaction

focus on a single input modality (e.g., physical corrections), we will develop a framework that incorporates the

diferent aspects of physical feedback.

Learning Rewards from Multiple Types of Feedback. Outside of physical interaction several methods have

been proposed to learn from diferent types of human feedback. For example, interactive imitation learning

approaches can synthesize demonstrations and corrections [20, 26, 42, 47]. Consider a human watching a mobile

robot: irst the human might teleoperate the robot throughout several laps of the building, and then the human

may jump in and correct the robot only when it makes a speciic mistake. Alternatively, methods that learn from

suboptimal humans often combine demonstrations and preferences [7, 9, 10, 22, 29, 49]. Imagine that you are

teaching a simulated robot to play an Atari game. After you do your best to provide a demonstration Ð and score

as high as possible Ð you can rank the robot’s autonomous performance to indicate when it is performing well

and when it is making mistakes. Most relevant to our research are [24] and [4], where the authors unite diferent

types of human feedback to learn a single reward model.

When applying these existing approaches to physical human-robot interaction we are faced with two problems.

On the one hand, methods like [4, 24] require prior knowledge about the human’s reward function Ð as we will

show in our analysis and experiments, these methods fall short when the human wants to teach the robot a

new or unexpected task. On the other hand, approaches like [7, 9, 10, 22, 29, 49] use reinforcement learning to

convert the reward function into robot behavior. But reinforcement learning is time consuming and requires

trial and error Ð which may not be possible (or safe) when humans are physically interacting with robot arms.

Accordingly, in this paper we introduce a formalism that unites demonstrations, corrections, and preferences

without the need for pre-deined tasks or reinforcement learning.

3 PROBLEM STATEMENT

Going back to our motivating example from Figure 1, the human wants to teach their robot arm how to perform a

manipulation task. To teach the robot the human exploits physical interaction: the human kinesthetically guides

the robot through the process of attaching a chair leg, modiies speciic sections of the robot’s trajectory, and

ranks the robot’s autonomous behavior across repeated interactions. In this section we formulate the problem of

learning from each of these diferent types of physical interaction. We explain how existing approaches combine

demonstrations, corrections, and preferences when the robot has prior knowledge about the tasks it will perform,

and then highlight the shortcomings of these assumptions. Finally, we deine our proposed reward model: we

highlight that this approach can take advantage of the assumptions from previous works, but is also capable of

learning new tasks that the robot does not know about beforehand.

Task. We formulate the task that the human wants the robot to perform as a Markov decision process:M =

⟨S,A,� , �, � ⟩. Here � ∈ S is the state of the robot and � ∈ A denotes the robot action. For instance, in our

motivating example the robot’s state � consists of its joint position and the position of objects in the scene, and

the robot’s action � is its joint velocity (e.g., a change in joint position). At timestep � the robot transitions to a

new state based on the dynamics ��+1 = � (�� , �� ). The task ends after a total of � timesteps.

ACM Trans. Hum.-Robot Interact.
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Demonstrations Corrections Preferences

Fig. 2. Diferent types of physical feedback. (Let) Humans can convey information to robot arms by kinesthetically guiding

the robot through a demonstration of the task. Demonstrations provide high-level information about the entire trajectory.

(Middle) To refine a specific part of the robot’s motion humans may make physical corrections. These corrections fine-tune

the robot’s behavior. (Right) Over repeated interactions the human will observe multiple robot trajectories. Humans can rank

these trajectories (i.e., give their preferences) to indicate when the robot is making a mistake. We note that preferences are

not physical Ð in the sense that the human does not apply forces or torques Ð but preference feedback naturally emerges

when humans and robots occupy the same space and the human can physically observe the robot’s behavior.

Remember that Ð although the human knows what task the robot should perform Ð the robot may be uncertain

about the correct task. We capture this objective using the reward function � : S → R. The reward function maps

robot states to scalar values (where higher scores indicate better states). To complete the task successfully the

robot must maximize the reward function; we will enable the robot to learn this reward function from physical

interaction.

Trajectory. During each iteration of the task the robot moves through a sequence of � states. We refer to this

sequence as a trajectory � ∈ Ξ such that � = (�0, �1, . . . �� ).

Demonstrations. The irst way that the human can physically communicate with the robot arm is by providing

demonstrations (see Figure 2). During a demonstration the human kinesthetically backdrives the robot throughout

a trajectory �� . We refer to the set of demonstrations asD = {��1 , ��2 , . . .}, where each element ofD is an� -length

trajectory that shows the entire task.

Corrections. During demonstrations the robot is passive throughout the entire interaction. But when the

robot attempts to perform the task autonomously, the human may intervene to correct just a snippet of the

robot’s motion. Let �� ∈ Ξ be the trajectory that the robot is autonomously executing, and let �� ∈ ΞC ⊂

Ξ be the human’s correction. We emphasize that �� includes fewer than � timesteps, and the human only

physically intervenes to push, pull, and guide the robot during �� . Let the set of human corrections be written

as C = {(��1 , ��1 ), (��2 , ��2 ), . . .}. Each correction consists of both the robot’s initial trajectory and the human’s

modiication.

Preferences. For demonstrations and corrections the human is physically in contact with the robot arm. But

the human and robot are also sharing the same space: and thus the human can observe the robot’s trajectories

and provide feedback about its behavior. Hence, the inal way that the human conveys information to the robot

is through preferences. We deine a preference query as a set of � trajectories ranked in order by the human:

� = {�1 ≻ �2 ≻, . . . , ≻ �� }. Put another way, the human thinks �1 better aligns with the task’s reward than �2.

We group the human’s preferences into a set Q = {�1, �2, . . .}, where each element of Q is a set of � ranked

trajectories.

ACM Trans. Hum.-Robot Interact.
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3.1 Preliminaries: Learning Rewards with Known Features

In order to formulate our problem we irst need to explain how other methods learn rewards from demonstrations,

corrections, and preferences. Remember that we deined the reward function � as an arbitrary mapping from

states to scores. Related works such as [4, 24, 32, 41, 50] introduce structural bias by assuming that the reward

function is a linear combination of features:

�� (�) = � · � (�) (1)

Here � : S → R� is the feature vector and � ∈ R� is a weight vector. Features capture metrics that are potentially

relevant to the current task. Within our running example from Figure 1, features could include the robot’s distance

from the chair, the angle of the chair leg, and the orientation of the chair. The robot is given these features a

priori and must determine which features are important to the human; i.e., the robot is given � and must learn � .

Sticking with our running example, the robot should learn to assign higher weight to the angle of the leg and

lower weight to the orientation of the chair.

If we assume that the robot has access to the task-relevant features Ð and thus the reward is structured as in

Equation (1) Ð we can use Bayesian inference to learn the correct weights � . Let � (� | D, C,Q) be the probability

of weights � given the human’s previous demonstrations, corrections, and preferences. Applying Bayes’ rule, and

recognizing that each type of feedback is conditionally independent, we reach:

� (� | D, C,Q) ∝ � (D | � ) · � (C | � ) · � (Q | � ) · � (� ) (2)

Here � (� ) is the prior distribution over � , and the � ( · | � ) terms capture the likelihood of the observed

demonstrations, corrections, or preferences given that the human has reward weights � . Previous works have

found expressions for these likelihood functions [24]. For instance, we can model humans as approximately

optimal, so that human inputs with higher rewards are increasingly likely [50]: � (�� | � ) ∝ exp(
∑

�∈��
� · � (�)).

What is important here is that Ð if we assume access to the task-relevant features Ð inferring � simpliies to

Equation (2).

This preliminary approach makes sense if robots have access to all their reward features a priori. In practice,

however, robots will inevitably face tasks they did not expect and features that were not pre-programmed [6].

Consider our motivating example: when we irst bring this robot arm onto the factory loor, will the robot

understand the features of chair orientation or leg attachments? Human users should not be forced to hand-

engineer features for each new task and environment; when the features are available, the robot arm should make

use of their structure Ð but when the human’s physical interactions are not aligned with any known feature, the

robot should not be constrained to misspeciied feature spaces [5]. Instead, we will develop robots that can learn

reward functions without requiring predeined features.

3.2 Problem: Learning Arbitrary Rewards from Physical Interaction

Our goal is (a) to learn the task reward function from demonstrations, corrections, and preferences and then

(b) to leverage this learned reward to identify an optimal robot trajectory that performs the task autonomously.

To remove the reliance on features Ð and enable the robot to learn arbitrary task rewards Ð we will model the

reward function as a neural network:

�� (�) =
︁

�∈�

�� (�) (3)

Here � is the weights of the neural network, �� (�) is the learned reward at state � , and �� (�) is the cumulative

reward along trajectory � . If features are available we can incorporate them within this formulation. Deine

� =

(
�, � (�)

)
as an augmented state vector which now includes both the system state and the features � (�).

Returning to Equation (3), we learn a reward model �� that maps this augmented state to reward values: cases

where the task reward simpliies to � · � (�) are a special instance of our more general formulation.
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We have chosen to learn a reward function because it provides an avenue to unify demonstrations, corrections,

and preferences. In the next section we will develop an algorithm to train this reward function from each diferent

type of physical interaction.

4 UNIFYING DEMONSTRATIONS, CORRECTIONS, AND PREFERENCES

Our learning approach is based on comparisons. Recall that our underlying hypothesis is that the human’s inputs

Ð whether they are demonstrations, corrections, or preferences Ð are intentional improvements to the robot’s

behavior. Put another way, the reward model in Equation (3) should assign higher scores to human trajectories

than to nearby alternatives. In this section we apply our insight to develop a uniied learning algorithm. First, we

explain how to generate trajectory deformations that we can compare against the human’s inputs. Next, we train

the reward function to score the human’s demonstrations, corrections, or preferences higher than these noisy

alternatives. Finally, we leverage constrained optimization to convert our learned reward model into a robot

trajectory. Throughout this section we consider both passive communication (where the human chooses how

to physically intervene) and active information gathering (where the robot prompts the human to uncover the

correct reward function). We emphasize that our resulting approach is lexible, and humans can teach the robot

using whichever physical feedback modalities they prefer.

4.1 Learning the Reward Model

Generating Trajectories for Comparison. Given an input trajectory � we irst seek to generate a nearby

alternative �̂ . The intuition here is that the human chose to input � and not �̂ Ð and thus the robot should assign

higher rewards to � as compared to �̂ .

To create alternatives we propagate noisy perturbations along the input trajectory following the approach

outlined in [13, 34]:

�̂ = � +�� (4)

Here � ∈ R� is a noise vector that the designer selects and� ∈ R�×� is a symmetric positive deinite matrix that

deines a norm on the trajectory space. Our approach is not tied to any speciic choice of� or �; however, for

our experiments we selected the acceleration norm [13, 34] in order to get smooth trajectory deformations of � :

� = (���)−1, � =



1 0 0

−2 1 0

1 −2 1

0 1 −2

0 0 1

· · ·

0

0

0

0

0
...

. . .
...

0 0 0

0 0 0

0 0 0

· · ·

1

−2

1



(5)

Each deformation uses the same � and a new vector �. In our experiments we sampled � from a zero-mean

Gaussian distribution, and for every sampled � we generated the corresponding �̂ Ð to visualize this process, we

show an example � and the generated alternatives �̂ in Figure 3.

Learning from Demonstrations. Now that we have a way to generate nearby trajectories, we will learn the

reward function by comparing these alternatives to the human’s inputs. We start with demonstrations. Assuming

that the human provides near-optimal demonstrations, the robot should learn to match each demonstration
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Original Trajectory �

Deformed Alternatives �

Fig. 3. Generating trajectories for comparison. In this example the human moves a 2-DoF point mass robot along a sine

wave. We record the initial trajectory � , and then apply Equation (4) to generate smooth perturbations �̂ . Our learned reward

model should score � as a beter trajectory than any of the alternatives �̂ .

�� ∈ D. More formally, the robot should learn a reward model such that �
(
��

)
> �

(
�̂�

)
, where �̂� is a deformation

found using Equation (4).

Let � (� ≻ � | � ) be the likelihood Ð from the robot’s perspective Ð that trajectory � has higher total reward

than trajectory � given that the robot has learned reward weights � . Inspired by prior work on human decision

making and Luce’s choice axiom [36, 37, 46], we write this probability as a softmax-normalized distribution:

�
(
�� ≻ �̂� | �

)
=

exp��
(
��

)

exp��
(
��

)
+ exp��

(
�̂�

) (6)

Remember that we want the robot to assign higher rewards to �� as compared to �̂� . When this happens we have

that �
(
�� ≻ �̂� | �

)
→ 1 in Equation (6). Accordingly, to drive the probability �

(
�� ≻ �̂� | �

)
→ 1, we train the

reward model to minimize the cross entropy loss [6, 7, 10, 22]:

LD (� ) = −
︁

�� ∈D

E
�̂�∼��

[
log �

(
�� ≻ �̂� | �

) ]
(7)

Note that in Equation (7) we sum the cross entropy loss across every demonstration �� ∈ D, and for each

demonstration we sample a set of nearby trajectories �̂� . Reward models that minimize Equation (7) will assign

higher scores to trajectories that are like the human’s demonstrations, and lower scores to trajectories that are

diferent from these demonstrations.

Learning from Corrections. During demonstrations the human backdrives the robot throughout the entire

task; but during corrections, the human only ixes a snippet of the robot’s trajectory. Given the robot’s initial

trajectory and the human’s correction of this snippet Ð i.e., (�� , �� ) ∈ C Ð we recognize that �
(
��

)
> �

(
�̂�

)
,

where �̂� is the segment of the robot’s trajectory that the human has intentionally modiied. More generally, we

assume that the human’s correction shows the robot the right way to perform this part of the task. We therefore

have �
(
��

)
> �

(
�̂�

)
, where �̂� is a deformation of just the human’s correction. Following the same derivation that

we applied for demonstrations, we reach the following loss function for corrections:

LC (� ) =
︁

(�� ,�� ) ∈C

− log
exp��

(
��

)

exp��
(
��

)
+ exp��

(
�̂�

) − E�̂�∼��

[

log
exp��

(
��

)

exp��
(
��

)
+ exp��

(
�̂�

)

]

(8)
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Minimizing Equation (8) encourages the robot to learn a reward function that classiies �� as a better trajectory

than both the original segment �̂� and perturbations �̂� of the human’s correction.

Learning from Preferences. As a inal form of feedback the human operator can rank the robot’s physical

trajectories. Consider the robot arm in Figure 1: each time the robot attempts to add a chair leg, the human

onlooker might score the robot’s performance, and mark whether trajectory �� is better or worse than trajectory

� � . We emphasize that these preferences provide a direct comparison between pairs of trajectories. Here we

cannot assume that the human’s preference is better than any other alternative; since the human’s feedback only

indicates that �� ≻ � � , the reward model should learn �
(
��
)
> �

(
� �

)
. Summing across the preferences � ∈ Q, we

obtain the loss function:

LQ (� ) = −
︁

�∈Q

︁

(��≻� � ) ∈�

log
exp��

(
��
)

exp��
(
��
)
+ exp��

(
� �

) (9)

where (�� ≻ � � ) is any pair of human-ranked trajectories from preference � . Intuitively, Equation (9) trains the

reward model to rank the robot’s trajectories in the same order as the human operator.

The human may passively provide these rankings over the course of repeated interactions. Alternatively, the

robot can actively prompt the human by rolling out a set of trajectories and asking for the human’s preference.

The goal of these active prompts is to reduce the robot’s uncertainty about the correct task reward. To formalize

this uncertainty we train an ensemble of� rewards with weights E = {�1, �2, . . . , ��}. Each of these reward

models is a separate instantiation of Equation (3), and is trained using the same demonstrations, corrections,

and preferences. Let � and � be two robot trajectories. If all reward models agree on the relative scores of these

trajectories Ð e.g., if ��� (�) > ��� (�) for each �� ∈ E Ð then the robot is conident that � ≻ �. But in cases where

the reward models disagree Ð for example, if ��1 (�) > ��1 (�) while ��2 (�) < ��2 (�) Ð then we do not know

which trajectory is better at the task. At times when the reward models disagree the robot needs additional human

feedback to resolve its uncertainty.

To actively learn about � we will query the human by physically showing two robot trajectories, �1 and �2, and

asking the human to choose which option they prefer. Humans may indicate that �1 ≻ �2 or �2 ≻ �1. Remember

that we do not know beforehand how the human will respond to the robot; accordingly, we select �1 and �2 such

that Ð no matter which option the human chooses Ð the robot maximizes the information it gains about the

unknown task reward � :

(�∗1, �
∗
2) = argmax

�1,�2∈Ξ

I
(
� ; �� | (�1, �2)

)
(10)

Here (�∗1, �
∗
2) is the greedily optimal query, �� is the human’s preferred trajectory, and I is the information gain

[11]. Following the derivation in [4], we ind that the expected information gain from query (�1, �2) across the

ensemble E of reward models becomes:

I
(
� ; �� | (�1, �2)

)
=

1

�

︁

�� ∈�

︁

� ∈E

�
(
�� ≻ �−� | �

)
log2

(
� · �

(
�� ≻ �−� | �

)
∑

� ′∈E �
(
�� ≻ �−� | � ′

)

)

(11)

where �� is the trajectory the human prefers, �−� is the other trajectory, and �
(
�� ≻ �−� | �

)
is the softmax-

normalized distribution from Equation (6). In practice, Equation (11) looks for a query where (a) each reward

model in the ensemble is conident about the relative scores of �1 and �2, but (b) some reward models think that

�1 ≻ �2, while other reward models think �2 ≻ �1. We note that this active learning step is entirely optional. The

robot still uses Equation (9) to learn from human preferences regardless of whether they are obtained passively or

actively. However, as we will show in our experiments, actively selecting prompts using Equation (10) accelerates

the robot’s reward learning and resolves uncertainty across the ensemble of reward models.

ACM Trans. Hum.-Robot Interact.



10 • Shaunak A. Mehta and Dylan P. Losey

Algorithm 1 Learning from Multiple Forms of Feedback

1: Randomly initialize the ensemble of reward models with weights E� = {� �0, �
�
1, · · · �

�
�}

2: Initialize the Demonstration, Correction and Preference bufers D, C,Q

3: Initialize the number of noisy alternatives for D, C and Q: �� , �� , ��

4: for � = 0, 1, 2, · · · do

5: Initialize the rankings bufer B

6: if � = 0 and Demonstration Provided then

7: D ← ��
8: else if Correction Provided then

9: C ← ��
10: else if Preference Provided then

11: Q ← �

12: end if

13: for � = 1, 2, · · ·�� do

14: Generate noisy alternative �̂
�

�
for �� ∈ D ⊲ see eq. 4

15: B ← (�
�

�
≻ �̂� )

16: end for

17: for � = 1, 2, · · ·�� do

18: Generate noisy alternatives �̂
�
� for �� ∈ C ⊲ see eq. 4

19: B ← (�
�
� ≻ �̂� )

20: end for

21: for � = 1, 2, · · ·�� do

22: Sample a preference � � ∈ Q

23: B ← � �

24: end for

25: Update the reward models E�

26: end for

Putting It All Together.We have identiied loss functions that train the reward model to match the human’s

demonstrations, corrections, and preferences. For each of these interaction modalities we have a common

theme: the human’s inputs should be scored higher than the alternatives. Our inal step is to unite Equation (7),

Equation (8) and Equation (9) into a single loss function:

L(� ) = LD (� ) + LC (� ) + LQ (� ) (12)

We note that Equation (12) is our parallel to the Bayesian inference from Equation (2).

We outline the implementation procedure for our approach in Algorithm 1. By controlling the number of

comparisons for each feedback type (�� , �� and �� ), we can adjust their relative weight. Within our experiments

we assign an equal importance to each of the feedback types. For our approach, the users can choose to provide

any form of feedback to the robot by indicating their choice on a user interface. Previous work has proved that it

is optimal to start with passive forms of feedback (e.g. demonstrations) before collecting active feedback (see

Theorem 2 in [4]). Following this, the default order for our simulations and user study is demonstrations, then

corrections, followed by preferences.

Given the human’s inputs, we train an ensemble of reward models that minimize L(� ). Each reward model is

a fully connected network with two hidden layers and leaky rectiied linear activation units. The output of the

reward model is bounded between −1 and +1 using tanh(·). Our ensemble includes three independently trained
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reward models: each model optimizes its weights using the Adam learning rule with an initial learning rate of

0.001 [28]. To compute the reward of a state � we take the average score from ��1 (�), ��2 (�), and ��3 (�). We retrain

the reward models after each new demonstration, correction, or preference from the human.

4.2 Optimizing for Robot Trajectories

The irst half of our formalism is learning a reward function (or ensemble of reward functions) from the human’s

physical interactions. In the second part of our approach we convert this reward model �� into a robot trajectory

�� . Related approaches use reinforcement learning to identify the trajectory that maximizes �� [7, 9, 10, 22, 29, 49];

however, we recognize that reinforcement learning may not be appropriate for physical human-robot interaction.

Here the human and robot are occupying the same space, and it becomes time consuming or unsafe for the robot

to test multiple trajectories through the trial-and-error process of reinforcement learning.

Recall that our intended application is manipulation tasks for robot arms. Within this setting we take advantage

of the underlying robot kinematics to solve for the optimal robot trajectory. More formally, we leverage constrained

optimization to convert the reward model into a robot trajectory:

�� = argmax
�∈Ξ

︁

� ∈E

︁

�∈�

�� (�) s.t. � (0) = �0, � (� ) = �� (13)

Here �0 is the start position of the robot arm (e.g., its current position) and �� is a desired goal position. In practice,

the goal position may not be known or there might not be a goal in the irst place; in this case we leverage

Equation (13) without the constraint � (� ) = �� . Recent research on trajectory optimization has developed

several approaches for Equation (13) [15, 21, 45]. Our formalism does not rely on any speciic optimizer; in our

experiments we use sequential quadratic programming to solve Equation (13) and identify the optimal robot

trajectory �� .

Summarizing our Algorithm. At the start of the �-th interaction the robot has an ensemble of reward models

with weights E = {�1, �2, . . . , ��}. The robot applies Equation (13) to identify the optimal trajectory under the

learned rewards, and then uses shared control to track this desired trajectory �� . The human onlooker may

intervene to kinesthetically guide the robot through the task, physically correct the robot’s motion, or rate the

robot’s overall behavior. We add this human feedback to the dataset of demonstrations D for the irst interaction

(i.e. if � = 1), and to the dataset corrections C, or preferences Q for all other interactions (� > 1).The robot then

updates its reward models to minimize the uniied loss function in Equation (12) Ð the robot leverages these

updated rewards to the start of interaction � + 1.

5 SIMULATION 1: LEARNING FROM MULTIPLE FORMS OF INTERACTION

Now that we have developed a uniied learning framework for physical human-robot interaction, we will compare

diferent versions of our approach to the state-of-the-art baselines. As discussed in Section 2, several approaches

learn from humans using physical interactions. Some of these approaches learn end-to-end models that capture

the user’s preferences for the task and learn a policy from the feedback provided, while others assume some

knowledge over the features in the environment. In the latter, the features capture the task-speciic concepts and

are assumed to be prior knowledge of the tasks that the robot may need to perform. In this section, we perform a

detailed comparison of various physical interaction approaches that learn from demonstrations, corrections and

preferences, and their various combinations.

Independent Variables. We test eleven algorithms that learn from physical interactions. Among these eleven

algorithms, seven are diferent versions of Our approach, i.e. using only demonstrations (Ours (D)), only

corrections (Ours (C)), only preferences (Ours (P)), demonstrations + corrections (Ours (DC)), demonstrations +

preferences (Ours (DP)), corrections + preferences (Ours (CP)) and demonstrations + corrections + preferences
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(Ours (DCP)). We include three baselines that learn end-to-end networks without using any predeined features

ś human-gated behavior cloning (BC) [45], adversarial inverse reinforcement learning (AIRL) [14] and a method

for learning from demonstrations and preferences developed for Atari games (Atari) [22]. We also use one

baseline that assumes prior knowledge of the features in the environment and learns from a combination of

demonstrations, corrections and preferences (RRIC) [24].

During BC, the robot learns a policy from the human’s initial demonstrations. The robot then shows the

trajectory to the human and the human can intervene to physically correct and improve the robot’s behavior at

any point in the trajectory. AIRL utilizes the demonstrations and corrections provided by the human to recover

a reward function. The robot then optimizes that reward function to generate new behaviors, and compares them

to the human’s original inputs. We used the repository from [49] to implement AIRL. Atari uses a two-step

approach. First the robot leverages the human’s demonstrations to learn a policy using imitation learning methods.

The robot then shows the human sample trajectories generated using the learned policy, and the human indicates

their preferences. These preferences are then used to learn a reward function that we optimize by applying the

soft actor-critic algorithm and generating queries in Atari. Finally, in RRIC the robot assumes full knowledge of

the features in the environment and the reward function is modeled as a linear combination of these features.

Based on the demonstrations, corrections and preferences provided by the human, feature weights are updated

using Bayesian Inference. Ours directly learns a mapping from states to reward values and generates a trajectory

to optimize that reward.

Procedure. The simulated human and a simulated robot performed two tasks (Table and Laptop) with each

algorithm (see Fig. 4). For each of these tasks, the simulated human is teaching the robot to carry a cup of cofee

to a goal position. In Table, the human wants the robot to carry the cup of cofee close to the table; in Laptop, the

human wants the robot to avoid going over the laptop while moving to the goal location. For this experiment we

used a 7-DoF Franka-Emika Panda robot arm. The robot did not have access to the task reward function. The

simulated human knew their reward function and provided demonstrations, corrections, and preferences to

optimize that reward and teach the robot.

Within this experiment we kept the number of interactions between the simulated human and the robot

constant for each method. For BC and AIRL, the simulated human provided 6 demonstrations. For Atari the

human irst provided 2 demonstrations and then asked for 4 preferences to the human. RRIC received an even

split for each feedback type: 2 demonstrations, 2 corrections and 2 preferences. Similarly, all diferent versions of

Ours received an even split for each feedback type that version is meant to incorporate. For example, Ours (D)

was given 6 demonstrations and Ours (DC) used 3 demonstrations and 3 corrections.

Dependent Variables. The simulated human worked with the robot to provide feedback across 6 interactions,

and the robot optimized its learned reward to produce its inal trajectory. We measured the performance of the

robot by computing the regret of this learned trajectory:

������ (�) =
︁

�∈�∗

�� ∗ (�) −
︁

�∈�

�� ∗ (�) (14)

where �� ∗ is the true reward function for the task, �∗ is the optimal robot trajectory for the task, and � is the

robot’s learned trajectory. Regret quantiies how much worse the robot’s learned behavior is than the ideal

behavior: lower values of regret indicate better robot performance.

Hypothesis. For this simulation, we had the following hypotheses:

H1: Our proposed approach with demonstrations, corrections, and preferences, Ours (DCP), will outperform our

approach with only one or two types of feedback.

H2: Ours (DCP) will outperform the end-to-end learning baselines.
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+

Fig. 4. Experimental results for simulated humans paired with a Franka Emika robot arm. (Let) we compare diferent

versions of our approach to state-of-the-art end-to-end learning baselines as well as a feature-based approach that combines

multiple forms of feedback. (Center) 15 simulated humans perform each task (Laptop and Table) using all the end-to-end

learning algorithms. (Right) The simulated humans perform each task with a feature-based learning algorithm. We record

the performance of the robot ater learning from each approach in the form of regret and report the average regret and

standard error. Ours (DCP) significantly outperforms all other versions of our approach (� < .05). Ours (DCP) has a

significantly lower average regret as compared to the end-to-end learning methods (� < .05) and performs at par with RRIC.

We emphasize that RRIC has access to all relevant features in the environment, while Ours learns the reward function from

scratch.

H3: The performance of Ours (DCP) will match RRIC with known features.

Results. Our results for this simulation are summarized in Fig. 4. Performing a repeated measures ANOVA test

(Normality of data veriied using Q-Q plots) with a Greenhouse-Geisser correction, we found that the robot’s

learning algorithm had a signiicant efect on the regret (� (1.818, 140) = 61.939, � < 0.05). By contrast, we found

that the task did not have a signiicant efect on the regret (� (1, 14) = 3.073, � = 0.101). Thus, we report the

combined regret for both the tasks in our results.

From the regret plots in Fig. 4 (Center), we observe that by combining all three forms of feedback our approach

outperforms all other versions of Ours where we use only one or two forms of feedback (� < 0.05). This provides

support for our hypothesis H1. We also observe that Ours (C) and Ours (DC) have a lower regret compared

to Ours (D), Ours (P), Ours (DP) and Ours(CP). This is a result of the iterative nature of the corrections as

compared to the demonstrations, where the human provides all inputs at once before the robot updates its reward

model.

We also notice that the end-to-end learning approaches perform at par with or better than some versions

of Ours when only one or two types of feedback are available to our approach. While Atari and Ours (DP)

receive the same forms of feedback, the regret for Atari is higher owing to the limited amount of data available

for training. We observe that BC has a lower regret than Ours (D), but performs at par with Ours (C). This

suggests that the performance of Ours improves when it receives incremental feedback from humans. However,

when all three forms of feedback are made available to our approach, Ours (DCP) signiicantly outperforms all

the end-to-end learning models (� < 0.05). This suggests that learning from multiple types of feedback is more

efective than learning from just one or two types of feedback. Here, we ind support for H2.
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Finally, we compare Ours (DCP) to RRIC, which has access to the features in the environment and learns

using all three forms of feedback within a Bayesian inference framework (see Fig. 4 (Right)). We observe that the

performance of Ours (DCP) is comparable to RRIC (� = 0.548). This suggests that Ours Ð an approach that

learns the reward end-to-end without any features Ð can perform as well as a Bayesian Inference approach that

requires prior knowledge of all the features. Here we ind support for our hypothesis H3.

6 USER STUDY: MULTIPLE FORMS OF PHYSICAL INTERACTION

So far we have evaluated our method in controlled experiments with simulated human users. In this section we

will test our uniied approach on actual participants. These participants physically interact with a 7-DoF robot

arm by applying forces and torques, and communicate their intended task to the robot through demonstrations,

corrections, and preferences. We compare our algorithm to interactive learning baselines that combine multiple

types of human feedback. Here we explore scenarios where the must learn the task from scratch: our method and

the baselines have no prior knowledge of the features or the tasks that the participants want to complete. Users

must communicate their desired tasks through physical interaction. Videos of our user study are available at

https://youtu.be/FSUJsTYvEKU.

Independent Variables. We tested four diferent algorithms that learn from physical interaction. Similar to

Section 5, our baselines include human-gated behavior cloning (BC) [42], adversarial inverse reinforcement

learning (AIRL) [14], and a method for learning from preferences and demonstrations developed for Atari games

(Atari) [22]. Ours leverages the uniied algorithm introduced in Section 4. We emphasize that each of these

approaches learns without pre-deined features. The implementation of each of these approaches follows the

procedure described in Section 5.

Experimental Setup. Participants physically interacted with a 7-DoF Franka Emika robot arm. During the user

study humans tried to teach this robot three tasks (see Figure 5). In Table the robot had to reach the goal while

carrying a cup close to the table; in Proximity the robot had to move to a goal region while staying away from

the user. Note that the nature of these two tasks is similar to that of the experiments performed in Section 5. In

this user study we introduce a new task, Cup, where the participants teach the robot to complete a scooping

action and then pour the cup at the goal position. We asked participants to mark their goal at the start of each

interaction. To encourage more diverse human inputs, participants were instructed to change their goal position

within a marked region between interactions.

Participants and Procedure. For our user study we recruited 15 participants from the campus community (5

female, average age 25 ± 4 years). Participants gave informed written consent prior to the start of the experiment

under Virginia Tech IRB #22-308.

The participants were divided into three groups of ive people. Each group of participants performed a single

task (i.e., participants only taught the table task, the proximity task, or the cup task). Importantly, users taught

this task with all four of the robot learning algorithms. The order of the algorithms was counterbalanced using

a Latin square design: e.g., some participants began with Ours, and others began with BC. For each learning

algorithm the human and robot started over from scratch: the robot had no prior information, and the human

provided new demonstrations, corrections, or preferences to convey their task.

For BC and AIRL the human provided 6 demonstrations1. With Atari the participant irst provided 2 demon-

strations and then the robot asked for 4 preferences (to reach a total 6 interactions). Finally, observing the result

from Section 5, that multiple forms of feedback enable a better learning, we provide our approach with all three

1For BC and AIRL we gave users the option of providing corrections that only modify a segment of the robot’s behavior. However, since the

robot’s learned behavior after two demonstrations was far from the user’s intended task, participants chose to keep demonstrating the entire

trajectory. Note that neither BC or AIRL can learn from preferences.
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Fig. 5. Learned trajectories and objective results from our in-person user study. (Top) Participants physically interacted with

a 7-DoF robot arm that had no prior knowledge about the tasks. The robot learned from physical interactions using our

approach and imitation learning baselines that combine multiple feedback modalities. (Middle) The final trajectories the

robot learned with each method. Five users taught the robot the Table task, five users taught the Proximity task, and five

users taught the Cup task. During each task the robot needed to reach a goal position within the white rectangle. We trace

the ��� position of the robot’s end-efector; within the Cup task the robot also needed to maintain specific orientations.

(Botom) The regret between the robot’s learned trajectory and ideal trajectory. Lower values of regret indicate that the robot

completed the task correctly, and the error bars plot standard error of the mean. textbfOurs outperforms AIRL and Atari on

the Table and Cup tasks (� < .05), and Ours has a lower regret than all the baselines for the Proximity task (� < .05).

forms of feedback. We divideOurs evenly between each type of physical feedback: users gave two demonstrations,

corrections, and preferences (to maintain a total of 2 + 2 + 2 = 6 interactions).

Dependent Variables. After participants inished providing their inputs, the robot leveraged its learning

algorithm to identify a inal trajectory. We measured how efectively this inal trajectory completed the intended
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Table 1. uestions on our Likert scale survey. We grouped questions into four scales and tested their reliability using

Cronbach’s � . We explored whether providing feedback to the robot was easy, the robot learned the task, if the users liked the

flexibility of using diferent feedback forms, and if they preferred to use the method in future. Computed �-values indicate if

users preferred our approach to the baselines, where ∗ denotes statistical significance.

Questionnaire Item Reliability F(3,42)
p-value

BC AIRL Atari

ÐIt was easy to provide feedback to the robot.
0.863 1.707 0.486 0.7 0.185

ÐProviding feedback to the robot was challenging.

Ð The robot learned to perform the task correctly.
0.911 11.982 p <0.05* p <0.05* p <0.05*

Ð The robot’s motion did not align with what

I was trying to teach the robot.

ÐI liked showing diferent types of feedback.
0.789 0.225 0.689 0.571 0.427

ÐI preferred just showing one type of feedback repeatedly.

Ð I would use this method in the future.
0.806 4.263 0.353 p <0.05* p <0.05*

Ð I would prefer another approach that I tried

if I was to do this again.

task. More speciically, we applied 14 to quantify the regret between the robot’s actual behavior and the ideal

task behavior.

We also administered a 7-point Likert scale survey [44] to assess the participants’ subjective responses to

each learning condition. Our survey questions were organized into four multi-item scales: how easy it was to

physically provide feedback to the robot, whether the robot learned to perform the task correctly, how lexible

the robot was to diferent types of physical interaction, and if they would prefer using this method in the future.

Every participant completed this survey four times: once after they inished working with each robot learning

algorithm.

Hypothesis. For our user study we had the following hypotheses:

H4: Robots using our uniied learning approach will perform the task better after the same number of physical

human interactions.

H5: Participants will subjectively prefer our learning algorithm as compared to the baselines.

Results. The objective results from our user study are presented in Figure 5, and the subjective responses are

summarized in Figure 6. Let us start with the objective results: After verifying the normality of the data using

Q-Q plots and performing a repeated measures ANOVA test on our results, we found that the robot’s learning

algorithm had a signiicant main efect on regret (� (3, 12) = 6.942, � < .05). Looking at Figure 5 we notice that the

regret for Ours is consistently lower than the baselines. Here lower regret is better Ð this indicates that the robot

learned trajectories better matched the human’s intended task. We can directly observe this trend from the inal

trajectories shown above: notice that Ours consistently moves to the goal region and completes the task, while

the alternatives produce noisy, inconsistent motions. Post hoc comparisons conirm that Ours outperformed

AIRL and Atari on the Table and Cup tasks (� < .05), and that Ours had an overall lower regret than all baselines

for Proximity task (� < .05). We observe that given the limited amount of data (only 6 interactions), Ours has

lower average regret with a low variance across all three tasks. On the other hand, Atari and BC fail to learn

the task representations accurately from the same limited amount of data, and thus have a higher variance in
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Fig. 6. Subjective results from our in-person user study. Higher ratings indicate user agreement (e.g., a score of 7 indicates

that it was easier to provide physical feedback). Error bars show standard error of the mean, and an ∗ denotes statistical

significance (� < .05). Ater watching the final trajectory learned by each approach, participants rated Ours as a beter

learner than the baselines. Users also preferred Ours to AIRL and Atari.

their performance. Overall, the results shown here and in the video submission indicate that our uniied learning

approach was best able to synthesize the human’s physical inputs and learn the correct task from scratch.

Next we consider the results from our Likert scale survey in Figure 6. After conirming that the scales

were reliable (Cronbach’s � > 0.7), we grouped each scale into a single combined score and performed a one-

way repeated measures ANOVA on the results. When users watched the robot’s inal learned behavior they

perceived Our approach as a better learner than the baselines (� (3, 42) = 11.982, � < .05), and when they

considered their experience teaching the robot they preferred to use Ours over the AIRL and Atari approaches

(� (3, 42) = 4.263, � < .05). One confounding factor here is the about of time it took for the robot to learn

from human’s demonstrations. With Ours and BC the entire process from teaching the robot to autonomously

completing the task took roughly 10 minutes, while with AIRL and Atari it took more than 15 minutes on

average (this additional time was needed to train the robot’s policy). Participants may have preferred Ours and

BC in part because they completed the training process more quickly. However, our overall results support

hypothesis H5 and suggest that participants subjectively perceived our uniied approach as a better learner from

demonstrations, corrections, and preferences.

7 SIMULATION 2: LEARNING WITH KNOWN AND UNKNOWN FEATURES

Now that we have tested our approach against baselines that learn end-to-end models, we will compare our

approach to state-of-the-art baselines that use the knowledge about the features in the environment to learn the

reward weights. As we discussed in Section 3.1, several related works learn from combinations of demonstrations,

corrections, and preferences by assuming that the reward function is based on features. These features capture

task-relevant concepts (e.g., the orientation of the chair leg) and are programmed using prior knowledge of

the tasks the robot will need to perform. Here we consider situations in which the robot must learn expected

tasks Ð i.e., cases where the features apply Ð as well as unexpected tasks where the pre-programmed features
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are insuicient. We conduct these experiments with simulated humans that provide inputs to real robot arms.

Overall, we break this section down into two parts: (a) a comparison to physical interaction approaches that learn

from demonstrations and corrections, and (b) a comparison to learning approaches that combine demonstrations

and preferences.

7.1 Learning from Demonstrations and Corrections

Independent Variables. We consider two baselines for learning from physical demonstrations and corrections:

Coactive [23, 32] and FERL [6]. In Coactive the robot assumes that it knows all the features for the current

task; based on the human’s inputs, the robot builds a reward function from these features and then selects the

optimal trajectory. By contrast, in FERL the robot recognizes that it may be missing some task-related features.

Here the robot leverages the feature demonstrations (feature traces) provided by the human to irst learn the

unknown features Ð once it has a model of these features, it then applies the same method as Coactive to build

the reward function. Remember that our proposed approach (Ours) does not rely on features. Instead, we learn

a mapping directly from states to rewards; for cases where the features are given, Ours can incorporate those

features in the augmented state to be used as an input to our reward model (for learning and execution). Note

that here, our reward model has the same information about the features as the other approaches (i.e. if Coactive

and FERL have information about only 1 feature, Ours also has information about only one feature).

Procedure. The simulated human and real robot performed three tasks with each learning algorithm (see

Figure 7). For all three tasks the human is teaching the robot to reach a goal position. In Table the human wants

the robot arm to move close to the table; in Laptop the human wants the robot arm to avoid passing above a

laptop; and in Cup the human wants the robot arm to carry a cup upright so that it does not spill. Each task has

two potential features: the goal that the robot should reach (e.g., distance to the goal) and the way the robot arm

should move towards that goal (e.g., height from the table, distance from the laptop, or orientation of the cup).

For these experiments we used a 6-DoF UR10 robot arm. This robot did not know the task reward function. To

teach the real robot in a controlled setting, we used a simulated human: the simulated human knew the correct

reward, and provided demonstrations or corrections that optimized this reward.

We seek to understand how our approach compares to baselines both when the robot has prior knowledge

about the task and when the task is new or unexpected. Accordingly, we tested three diferent conditions: (a)

when the robot knows all task-related features, (b) when one task-related feature Ð Laptop, Table or Cup Ð is

missing, and (c) when the robot does not know any features of the task.

Dependent Variables. The simulated human worked with the real robot to provide 20 inputs (i.e., demonstrations

and corrections) over repeated interactions. For Coactive and Ours the irst input is a task demonstration, and

the remaining interactions are corrections. For FERL the type of input depends on the number of unknown

features. When all the features are given, FERL also starts with a task demonstration followed by corrections.

But when any feature is missing, the human irst provides 10 feature demonstrations per missing feature. After

these oline demonstrations (which are meant to teach features to the robot), the human provides one task

demonstration and corrections similar to Coactive andOurs. Thus, each method receives one task demonstration

and 19 corrections to learn the task (the feature demonstrations are not included as part of the 20 interactions).

After each interaction we measured the performance of the learning robot using equation 14.

Hypothesis. For this experiment we had the following hypotheses:

H6: Our method will match the baselines when all the features are known.

H7: Our method will outperform both Coactive and FERL when one or more features are missing.

Results. Our results are visualized in Figure 7. Note that this igure is a grid: the columns are the tasks, and

the rows are the amount of prior knowledge that the robot has about the tasks. To analyze the results we

irst veriied the normality of our data using Q-Q plots and then performed a repeated measures ANOVA with
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Fig. 7. Experimental results for simulated humans paired with a UR10 robot arm. (Let) We compare our approach to

two existing algorithms that learn from physical interaction. Coactive [23, 32] assumes that the reward is composed of

pre-programmed features, and FERL [6] learns features from human demonstrations before constructing a reward function

from those features. (Right) Over repeated interactions 10 simulated humans input demonstrations and corrections to teach

the Table, Laptop, and Cup tasks. The columns correspond to the tasks, and the rows capture the prior information the robot

has about each task. In the first row the robot is given all task-related features, in the middle row the robot is missing one

feature, and in the botom row the robot has no prior information about the task. The plots show regret (the diference in

reward between the ideal trajectory and the learned trajectory), and the shaded regions show the standard error. At the end

of all 20 interactions Ours performs similar to or worse than Coactive and FERL when all features are known. If one or

more feature is missing, however, Ours outperforms both baselines.

Greenhouse-Geisser correction. We found that the robot’s learning algorithm had an efect on regret across all

tasks and conditions: � (1.040, 18) = 29.063, � < 0.05.

To understand this result we next explored how the robot’s performance changed based on the amount of prior

information available to the learning algorithm. In the irst row of Figure 7 we consider scenarios where all the

task-related features are known. For example, during the Table task the robot knows that the reward is a function

of the distance from the goal and the height of the end-efector. Overall, we found that Ð when all features are

given Ð Ours performs on par with or worse than the baselines by the end of all 20 interactions. Post hoc tests

revealed that for the Table task Ours matched the alternatives (Coactive: � = 0.788, FERL: � = 0.790). During

Laptop our method performed similarly to Coactive (� = 0.117) but had higher regret than FERL (� < 0.05).

Finally, within Cup both FERL and Coactive outperformed our approach at the last interaction (� < 0.05)

These results partially support hypothesis H6: when the robot is given prior information about all the features,

existing methods leverage this structure to accurately learn the human’s reward. Our approach starts with worse
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performance because it does not make assumptions about the reward function and must learn to focus on the

given features.

However, the relative performance changes once the robot encounters new or unexpected tasks. In the second

row of Figure 7 we test settings where the robot knows one feature (distance to the goal) but does not know

the other task-related feature. Because Coactive assumes that all the features are given, it treats each human

input as an observation about the correct distance to the goal (and never realizes that the human’s inputs may

be communicating something else). FERL takes a step towards resolving this problem by trying to learn the

missing feature from the irst four interactions. But post hoc tests reveal that our proposed learning approach

matches or outperforms the feature-based alternatives. For the Table task there are no statistically signiicant

diferences between Ours andCoactive (� = 0.074), but Ours has a lower regret than FERL (� < 0.05). On

the other hand, during Laptop and Cup our method leads to less regret than both the baselines by the end of

the physical interactions(� < 0.05). This trend continues in the inal row of Figure 7 where the robot has no

prior information about the task reward. Here Ours outperforms both baselines across all three tasks (� < 0.05).

Overall, these results suggest that when the robot encounters situations where it has incomplete information, our

unstructured reward learning approach is better able to capture the correct task than baselines that depend on

task-related features. We therefore ind support for H7 when the robot is learning from physical demonstrations

and corrections.

7.2 Learning from Demonstrations and Preferences

Independent Variables. So far we have compared our approach to baselines developed speciically for phys-

ical interaction when learning from demonstrations and corrections. Next, we turn our attention to alternate

approaches that learn from demonstrations and preferences [7, 9, 22, 24, 49]: although these methods are not

designed only for physical interaction, they can be applied to our setting. Here we compare Ours to DemPref [4],

a recent approach that combines both demonstrations and preferences to build a model of the human’s reward

function. Like Coactive in the previous experiment, DemPref assumes that the reward function is composed of

features, and the robot knows all the relevant features for the current task. In this experiment, we aim to study

the trade-of between our proposed approach and approaches that utilize Bayesian inference to learn the task

representation from human feedback.

The DemPref algorithm has two parts. First, the robot gets demonstrations from the human to learn a rough

estimate of the reward function; next, the robot actively queries the human to elicit their preferences and ine-

tune the learned reward. Recall from Section 4 that under our proposed approach the robot can collect human

preferences passively or actively. We will therefore consider two diferent versions of Ours: one where the robot

gets the human’s preferences from randomly chosen trajectories,Ours (Passive), and one where the robot applies

Equation (10) and Equation (11) to select preference queries that will maximize the information the robot gains

about � , Ours (Active). To make the comparison as fair as possible, we have given both DemPref and Ours the

same dataset of 1000 trajectories from which to choose their preference queries. Each query in this dataset was

sampled by choosing a random goal in the robot’s workspace followed by generating two noisy trajectories to

the goal. Finally, to show that obtaining human preferences improves the performance of our approach, we also

include Ours (Demo), a baselines where the robot learns from only one demonstration (without ever considering

the human’s preferences).

Procedure. We perform this experiment in a controlled environment by pairing simulated humans with a 7-DoF

Franka Emika robot arm (see Figure 8). The environment has three features: the distance of the robot from the

bowl, the height of the robot from the table, and the distance between the robot and the ball. For each learning

algorithm we simulated 500 humans with randomly selected reward functions that depend on these three features.

Put another way, every simulated human assigns a diferent relative importance to the task features following
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Fig. 8. Experimental results for simulated humans paired with a Franka Emika robot arm. (Let) We compare our approach

to DemPref [4], a method for learning from demonstrations and preferences that assumes the robot has access to all

task-related features. (Right) One hundred simulated humans atempt to teach the robot their desired task: each user

provides one demonstration followed by 10 preferences. In DemPref (All) the robot knows all three task-related features, in

DemPref (Two) the robot is missing one feature, and in Ours (Demo) the robot only observes a single demonstration. We

compare these baselines to our approach when the robot chooses preference queries at random, Ours (Passive), and when

the robot asks questions to gain as much information as possible, Ours (Active). The shaded region is the standard error.

Our approach outperforms DemPref when a feature is missing and the robot must learn an unexpected task.

Equation (1). The robot does not know the human’s reward function a priori. Over repeated interactions, the

robot attempts to identify the correct reward (and the corresponding optimal trajectory) from the demonstrations

and preferences of the current human user. Each simulated user selects their inputs to noisily optimize their

internal reward function.

This experiment is designed similarly to the simulation in Section 7.1. We want to explore how our approach

compares to DemPref in situations where the robot encounters a familiar task and settings where the robot

is faced with new or unexpected tasks. We therefore compare Ours to DemPref (a) when all the features are

known and (b) when one feature is missing. Recall that the task has three potential features. For case where one

feature is missing, we performed separate trials where we removed either the irst feature, the second feature, or

the third feature; we then report the average across these runs. Our approach was never given any information

about the features (i.e., Ours had no prior information about the task).

Dependent Variables. The simulated human worked with the real robot over 11 interactions. During the irst

interaction the human provides a demonstration, and during the next 10 interactions the robot collects preferences.

After each interaction the robot solves for its best guess of the task trajectory: we measure the performance of

the robot learner using regret as deined in 14.

Hypothesis. For this experiment we had the following hypotheses:

H8: Our method will outperform DemPref when the robot does not know all the task-related features.

H9: Our method will converge to the correct trajectory more rapidly when choosing active preference queries as

compared to passively collecting preferences or ignoring preferences altogether.

Results. We summarize the results from this simulation in Figure 8. Remember that lower regret scores are

better: After testing for the normality of data using Q-Q plots, a repeated measures ANOVA with Greenhouse-

Geisser correction revealed that the learning algorithm had a signiicant main efect on regret by the end of the

interactions (� (1.994, 1996) = 366.897, � < .05).
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In settings where the robot encounters an expected task Ð i.e., when all the features of the environment are

pre-programmed into the robot arm Ð DemPref (All) outperforms our proposed approach; Ours (Passive):

� < .05 and Ours (Active): � < .05. However, when the robot is missing a task-related feature DemPref (Two)

becomes confused by the human’s feedback. Looking at Figure 8, we notice that DemPref (Two)’s performance

decreases as the the human provides additional preferences: this occurs because the robot is misinterpreting the

human’s inputs as feedback about the two known features (instead of the one missing feature). By the end of the

physical interactions our proposed approach better understands the unexpected task than the baseline; Ours

(Passive): � < .05 and Ours (Active): � < .05. Overall, the results here agree with hypothesis H8. From this

result, we conclude that when the robot has access to the environment features, Bayesian inference approaches

perform on par with or better than our proposed reward learning approach. However, in more open-ended cases

where information on reward functions is missing, Ours is more suitable for robot learning.

We next compared diferent versions of our learning algorithm. First, we ind that learning from both demon-

strations and preferences provides more information about the task than learning only from the human’s initial

demonstrations. Post hoc tests show that Ours (Demo) has signiicantly higher regret than Ours (Passive)

(� < .05) and Ours (Active) (� < .05). Next, we tested to see whether actively selecting preference queries

would lead to faster adaptation than passive human feedback. Remember that for Ours (Active) the robot asked

questions using Equation (10), while for Ours (Passive) the robot chose preference queries at random. We

observe that Ours (Active) has signiicantly better performance than Ours (Passive) across 500 users (� < 0.05).

We conclude that hypothesis H9 is supported when robots learn from demonstrations and preferences.

8 CONCLUSION

In this paper we developed an alternate formalism for learning from physical human-robot interaction that

uniies demonstrations, corrections, and preferences. When humans and robots share spaces, physical interaction

is inevitable. Robots should leverage this interaction to learn from the human and improve their own behavior.

But physical interaction takes many forms: humans can kinesthetically guide the robot throughout an entire task,

ine-tune snippets of the robot’s motion, or indicate which robot trajectories they prefer. Existing methods either

learn from one of these interaction modalities, or combine multiple modalities by assuming prior information

about the human’s task. Instead, we introduce an end-to-end framework that (a) learns a reward function from

scratch and then (b) optimizes this reward function to obtain robot trajectories.

Our key technical insight was that we can unite demonstrations, corrections, and preferences within the

same framework by learning to assign higher rewards to these human inputs than to nearby alternatives. We

irst described a way to generate trajectory modiications. Next, we derived loss functions for learning from

demonstrations, corrections, and preferences, and used these loss functions to train an ensemble of reward models.

We also enabled robots to actively prompt the human and gain information about the correct task behavior.

Finally, we converted the robot’s learned rewards to robot trajectories using constrained optimization. Our

framework was speciically developed for robot arms performing manipulation tasks: through simulations and a

user study we compared our approach to multiple state-of-the-art baselines. Our results indicate that Ð when

the robot knows what tasks to expect Ð our learning approach is comparable to existing methods that rely on

pre-programmed features. However, when the robot encounters unexpected tasks (or when the robot must learn a

new task from scratch), our method outperforms the interactive reward learning and imitation learning baselines.

Limitations and Future Works. Our work is a step towards seamless communication between humans and

robot arms. Because our system can learn new behaviors, one practical concern is safety: we must ensure that the

robot learns trajectories that are safe for shared human-robot spaces. For instance, in our running example the

robot arm should never learn to swing towards the human or run into the table. If the designer knows these safety

constraints a priori we can embed them within our approach. Speciically, designers could augment Equation (13)
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to constrain the robot to have a certain workspace or speed thresholds. However, if designers do not impose any

limits, we currently cannot guarantee that our robot will learn human-friendly behaviors.

One assumption throughout our work is that the human’s inputs are noisily optimal. We assume that Ð when

the human makes a correction or provides a preference Ð on average their input is better aligned with their

underlying reward function than the alternatives. However, in some settings and modalities the human’s inputs

may have a persistent bias, leading to suboptimal demonstrations, corrections, or preferences. Imagine a person

teaching a robot to move across the table: if this human teacher cannot reach the opposite side of the table, all

of their demonstrations may only move the robot part of the way to their intended goal. Existing works have

explored methods for extrapolating from suboptimal demonstrations to reach performance that exceeds the given

feedback [8, 9, 43]. We hypothesize that these methods could be combined with our reward learning approach

by leveraging the diverse types of human feedback. For example, the user may have a persistent bias in their

demonstrations but not their preferences (e.g., in our example the human cannot reach across the table but they

can compare two trajectories that do so). Hence, we envision an iterative solution where the robot uses our

approach to build a reward model from diferent types of feedback while identifying which of these modalities

are biased and which are reliable.
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