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Abstract— Today’s robots can learn the human’s reward
function online, during the current interaction. This real-time
learning requires fast but approximate learning rules; when
the human’s behavior is noisy or suboptimal, today’s approxi-
mations can result in unstable robot learning. Accordingly, in
this paper we seek to enhance the robustness and convergence
properties of gradient descent learning rules when inferring the
human’s reward parameters. We model the robot’s learning
algorithm as a dynamical system over the human preference
parameters, where the human’s true (but unknown) preferences
are the equilibrium point. This enables us to perform Lyapunov
stability analysis to derive the conditions under which the
robot’s learning dynamics converge. Our proposed algorithm
(StROL) takes advantage of these stability conditions offline
to modify the original learning dynamics: we introduce a
corrective term that expands the basins of attraction around
likely human rewards. In practice, our modified learning rule
can correctly infer what the human is trying to convey, even
when the human is noisy, biased, and suboptimal. Across
simulations and a user study we find that StROL results in
a more accurate estimate and less regret than state-of-the-
art approaches for online reward learning. See videos here:

I. INTRODUCTION

Robots can learn in real-time from human feedback.
Consider Figure |, where a robot arm is carrying a cup of
water close to a pitcher. Existing work enables this robot to
learn the human’s preferences (i.e., their desired behavior)
online based on the human’s actions. For instance, if a human
pushes the arm away from the pitcher, the robot will modify
its current trajectory to keep cups farther from pitchers.

To achieve this real-time performance, today’s robots often
use fast but approximate learning rules. Methods like [1]—
[7] maintain a point estimate over the human’s preferences,
and update this estimate online using gradient descent. This
works efficiently when user’s inputs are perfectly aligned
with the assumptions of the robot’s learning algorithm.
But when the human inevitably deviates, today’s fast but
approximate learning rules are highly sensitive: noisy, biased,
and suboptimal humans can lead to unstable robot learning
[3]. Returning to Figure |, a human that overcorrects the
arm causes the system to oscillate between avoiding and
approaching the pitcher, continually interacting without ever
converging to the human’s true preference.

In this paper we tackle the question:

How can robots leverage online learning algorithms while
ensuring robustness with suboptimal human feedback?
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Fig. 1. Human physically correcting a robot arm to convey their reward
parameters 6*. The robot learns online, and updates its point estimate 6
after each human action. (Left) When the human takes noisy or suboptimal
actions, the given learning dynamics can become unstable and fail to
converge to 6*. (Right) We modify these dynamics to expand the basins
of attraction and increase robustness in the face of suboptimal humans.

To answer this question we will model the robot’s learning
algorithm as a dynamical system in the continuous space
of preference parameters. By treating online learning as a
dynamical system we enable a control theoretic perspective
that formally studies the desired convergence and robustness
properties of the robot learner.

Our key idea is to augment the initial learning dynamics
with an added corrective term. The point of this corrective
term is to expand the basin of attraction of the robot’s learn-
ing dynamics: the augmented system should now converge
to the human’s true preferences under a larger set of initial
conditions and suboptimal human inputs. But how do we
find the optimal values for this corrective term? Our work
recognizes that not all preferences are created equal: even
though the preference space is inherently continuous, there
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are are only a few relevant modes that the human might
want. Consider Figure |: along the spectrum of distances to
pitcher, either (a) the human does not care if the robot moves
over the pitcher or (b) the human wants the robot to avoid
this space. We model these modes via multimodal priors
over the human’s preferences. Combining these priors with
Lyapunov stability analysis, we introduce an offline learning
procedure for optimizing the corrective term. In practice, our
modified learning rule shapes the robot’s basin of attraction
around each functionally different preference, enabling fast
convergence despite suboptimal human feedback. Returning
to Figure |, under our approach the human can provide
unintended forces — e.g., accidentally push too hard — and
still convey their preference for keeping away from pitchers.
Overall, we make the following contributions:

Formulating Conditions for Convergence. We write real-
time learning from human feedback as a dynamical system
where the human’s true preferences are the equilibrium point.
We then apply Lyapunov stability analysis to derive the
conditions for converging to this equilibrium.

Learning to Learn from Suboptimal Humans. We change
the learning dynamics of the system to include an additional
term. Offline we train this term to shape the dynamics and
increase the basin of attraction around preferences sampled
from a known prior. We refer to the resulting algorithm as
StROL: Stabilized and Robust Online Learning.

Collaborating with Imperfect Users. We perform simu-
lations and a user study across scenarios with robot arms
and autonomous driving. We demonstrate that our proposed
learning dynamics are more robust to noisy and suboptimal
humans than state-of-the-art alternatives.

II. RELATED WORKS

We focus on real-time learning from humans. We seek to
learn what the human wants (i.e., preferences) while framing
learning in human-robot interaction as a dynamical system.

Online Robot Learning from Humans. Online reward
learning explores how robots can infer preferences from
nearby humans during an interaction [8]. In settings where
humans correct the robot’s behavior — or intervene when
the robot makes a mistake — online learning enables rapid
robot adaptation. Prior works have applied online learning
from human feedback to autonomous vehicles [9], assistive
exoskeletons [10], and robot arms [11]. To enable real-
time performance, online learning often requires simplify-
ing assumptions. For instance, relevant works like [1]-[7]
maintain a point estimate of what the human wants, and
update this estimate using gradient descent. Unfortunately,
the approximations needed for online learning also make the
system sensitive to suboptimal human inputs. When the user
inevitably messes up (and incorrectly intervenes) the robot
may learn the wrong preferences [3] or misrepresent the
human’s true intentions [5]. Instead of thinking of this as a
learning problem, we instead treat this as a control problem:
how should robots modify their learning rule to ensure
effective performance across suboptimal human inputs?

Learning from Humans as a Dynamical System. As a
step towards fast and seamless adaptation, we will model
online robot learning from humans as a dynamical system.
Recent works have found different ways to incorporate
learning mechanisms into the dynamics models of human-
robot interaction. This includes shared control settings where
the robot adjusts its desired trajectory based on applied
forces and torques [12]-[14], jointly learning a model of
the human policy and physical dynamics [15], modeling the
human’s learning process as a dynamical system [16], and
dynamic movement primitives that react to human motions or
demonstrations [17]. Across many of these previous works,
the authors apply control theory to demonstrate that their
proposed dynamical system is stable. But we take the op-
posite perspective: instead of using dynamics and control to
reactively analyze a given learning method, we will employ
control theory to actively shape the robot’s learning rule in
ways that lead to robust convergence.

Priors over Human Preferences. A core idea for our
approach is that — even when the robot is learning in
continuous spaces — there are distinct modes of human
preferences. Think back to our motivating example: there
is a continuous spectrum of distances between the robot
and pitcher that the human could prefer. However, at a
high level, the space of preferences can be divided into two
distinct preference modes: avoiding the pitcher or ignoring
it altogether. Research in cognitive science and machine
learning suggests that humans have strong priors over how
other people with act [18], [19] and what sort of behaviors
are reasonable [20], [21]. Robots can often obtain these priors
from data: recent works have shown that large language
models accurately predict the different actions a human
might take [22]. Building on these works, we leverage
intuitive, multimodal priors over the continuous preference
space to shape the robot’s learning rule, yielding more robust
and efficient learning from human data.

III. PROBLEM STATEMENT

We consider interactive scenarios where robots learn from
humans in real-time. This includes settings where the robot
performs a task and the human is purely a teacher (e.g., a
human physically correcting a robot arm), or settings where
the human and robot are both performing a task in the
same environment (e.g., an autonomous car driving near a
pedestrian). In both settings the human has a task that they
want to perform, and the robot is trying to learn this task
from the human’s actions. In this section we formulate real-
time human-robot interaction as a dynamical system with
two parts: state dynamics and robot’s learning dynamics.
We assume the state dynamics are known (i.e., the robot
has a model of the environment), and the robot is initialized
with some learning dynamics (i.e., the designer provides
a baseline learning rule). We will explore how to modify
these initial learning dynamics to stabilize interactions with
humans that take noisy, imperfect, or unexpected actions.

Physical Dynamics. Let z € & denote the system state.
In our experiments x can be the joint position of a robot



arm, or the combined pose of an autonomous car and human
pedestrian. At each timestep ¢ the human takes action uy €
Uz and the robot takes action ug € Ur. The system state
transitions according to the known, deterministic, discrete-
time state dynamics:

' = 2t uby, uky) (1)

The interaction ends after a total of T' timesteps. We empha-
size that the human and robot only collaborate for a single
interaction; the robot does not repeatedly work with the same
human across multiple, separate interactions.

Unknown Parameters. During interaction the robot opti-
mizes its reward function. There may be some aspects of this
reward that the robot already knows — e.g., the robot arm
should carry water across the table. However, there are also
parameters the robot does not know — like whether the robot
should avoid moving over the pitcher. Let the true objective
be R(x,0*) — R, where 6* € R? is a d-dimensional vector
of correct reward parameters (e.g., the task that the robot
should optimize for). Returning to our motivating examples,
0* could capture how the robot arm should carry a glass, or
where and when the pedestrian will cross the road. The robot
does not know #* and must learn these parameters from the
human data—specifically, observations of the human’s actions.

Prior. Although the robot does not know 6* a priori, we
assume the robot does have a prior P(#) over the continuous
space of reward parameters. This prior encodes what types
of behaviors the person might want: returning to Figure I,
the prior could be a bimodal distribution signifying that
the human either wants to avoid the pitcher or does not
care about moving over this pitcher. In our experiments we
set P(0) as a multimodal distribution, where each mode
corresponds to a different type of behavior.

Learning Dynamics. The robot is trying to learn the true
reward parameters 6*. For tractable, real-time learning, the
robot maintains a point estimate of these true reward pa-
rameters: this point estimate is the robot’s best guess of 6*.
Let 0% denote the robot’s point estimate at timestep ¢, and
remember that § € © lies in a continuous Euclidean space.
Building on the state-of-the-art in online learning from
human feedback [2]-[6], [23], we use gradient ascent to
capture the deterministic dynamics of the point estimate:

Pt =0t + - g(xt, u%,u%v Qt) 2)

Here o > 0 is the learning rate and g(x,u3,ur,6) — RY
is a function that determines how the point estimate changes
in response to human action uy. Throughout the paper, we
use the term learning dynamics to refer to Equation (2) and
g interchangeably. The choice of g is up to the designer; in
our analysis, our only requirement is that g in Equation (2)
must depend on human action wy,.

Example. Below we list one common choice of learning rule.
Let x93y = f(z,us,ur) be the next state if the human takes
action uyy, and let g = f(z,0,ug) be the next state if
only the robot acts. Related works [2]-[5] update the point
estimate to increase the reward for the human’s corrected

state x4 as compared to the default state z:

We will use Equation (3) in our experiments. However, our
underlying method is not tied to this specific instantiation.

Perturbations. We have formulated human-robot interaction
as a dynamical system with state dynamics in Equation (1)
and learning dynamics in Equation (2). Ideally, we want the
estimate 6 to converge towards the human’s preferences 6* so
that the robot can optimize the correct reward function. This
would be straightforward if the human’s inputs uy exactly
aligned with the robot’s learning algorithm. Consider our
motivating example of a human teaching a robot arm how
to carry a cup: if the human physically corrects the robot
such that g(us;) causes §'F1 — 6*, then the robot will learn
the correct task. But what if the human is not a perfect
teacher? We recognize that humans are suboptimal agents
[24], [25], and thus our dynamical system must be robust to
perturbations in the human’s actions. We want 6 to converge
to the unknown equilibrium #* even when the human’s inputs
are not precisely aligned with the given dynamical system.

IV. SHAPING THE LEARNING DYNAMICS TO ENLARGE
BASINS OF ATTRACTION

In this section we present our control theoretic approach
to modify the learning dynamics by adding a corrective term,
making the system robust to suboptimal humans. Our pro-
posed method is based on stabilizing the learning dynamics
around a preference equilibrium 6 = 6*. More specifically,
we leverage Lyapunov stability analysis in Section to
derive a condition which guarantees that the error between
0 and 6* is asymptotically decreasing. This condition gives
us a stable region of actions that the human can take to
drive the robot’s point estimate # towards the human’s true
preference parameter #*. Next, in Section we focus on
learning the optimal values for the correction term offfine.
Leveraging the Lyapunov stability condition in addition to
our model of the human and priors over their preferences,
we modify g to expand the basins of attraction so that the
learning dynamics align with the human’s behavior.

A. Deriving a Stability Condition

We know that human teachers will not always provide
perfect, consistent inputs. Rather than assuming the human
selects a single optimal choice of uy; to teach the robot, we
are instead interested in the domain of human actions that
convey #*. Put another way, under what conditions does the
human’s action uy cause the estimate 6 to converge to 6*?

Recall that our key idea is to augment the initial learning
dynamics of the system by adding a correction term. Thus,
we write the updated learning rule as:

g=9+q “4)

where ¢' is short for the original rule g(z‘,u},,u%,6"),
and § denotes the correction term §(z',u},,uk,0"). By
introducing this correction term in the learning dynamics,
we aim to expand the basins of attraction and stabilize
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Example of how our proposed dynamics approach expands the learning basin of attraction. (Left) The robot is carrying a cup across the table.

The robot does not know how it should move near a laptop: when 6 = +1 the human wants the robot to move straight to the goal, and when 8 = —1 the
human wants the robot to avoid moving above the laptop. (Right) Plots of the robot’s estimate 6 as a function of the human’s action w3 at the start state.
With the original learning dynamics g the learning is inconsistent and gradual (i.e., nearby actions can convey either ignoring or avoiding the laptop). But
the modified learning dynamics g expands the basin of attraction, so that nearby actions teach the robot the same parameters.

the dynamics across a wider range of human inputs wuyy.
Substituting this modified learning rule into Equation (2),
we get the updated learning dynamics for the system:

0 =0t a- (g +4") 5)

Ideally, our system learns to drive the robot’s current estimate
of the human parameters 6 to the equilibrium 6* based on
the human’s actions. Define ¢! = 0* — ' as the error in
the robot’s estimate of the human preferences at the current
timestep. To identify the set of human actions that drives
6t — 0* and causes the system to converge to equilibrium,
we will apply Lyapunov stability analysis.

Let the Lyapunov candidate function be V! = ||e!||3. Note
that this function is positive definite and radially unbounded,
i.e., the function cannot be 0 at any point except for the
equilibrium (6% = 6*) and V! — oo as e; — oo. The time
derivative of the candidate function is:

VEVE V= e - [l ©)

For global asymptotic stability of the system around the
equilibrium, according to Lyapunov’s Direct Method we need
that V < 0 [26]. Substituting this condition into Equation (6),
the sufficient condition for convergence becomes [|e!™1||? <
|let||?. Plugging in e’ and the modified learning dynamics
from Equation (5), we reach:

16— 6" —a- g5 < [l6” — 6|13 (7

Expanding this inequality and rearranging the terms, the
sufficient condition for global asymptotic stability is:

a?)|g']13 - 2a(e' - ') < 0 ®)

Any action uy that satisfies this constraint lies in the basin
of attraction and will eventually drive §° — #* (i.e. the set
of these actions define a stable region of human inputs).
Conversely, any human actions u; that does not satisfy this
constraint will cause the error in # to remain constant or
increase (i.e. an unstable set of human inputs). We emphasize
that the condition derived in Equation (8) depends on how
g maps the human’s actions to changes in #: a given human
action may satisfy Equation (8) for one choice of learning

dynamics g but not for another. We also note that a more
negative value in this constraint suggests that the human
actions ug; are causing 6 to converge more rapidly.

B. StROL: Learning the Correction Term

The Lyapunov stability condition provides a functional
requirement for robustness of the overall learning dynamics,
g. Although we introduced a modification to the learning
dynamics via the addition of ¢, how do we find the correct
values for this term? Here we focus on finding the optimal
values for §. Notice that to leverage the convergence condi-
tion defined in Equation (8), we need some prior information
about the human preferences 6* (to evaluate e') and the range
of actions uy the human may take (to evaluate g).

Prior. In any given environment there are a few different
tasks that a human is likely to perform, i.e., we assume a
prior over the space of human preferences P(#). This prior
is a designer specified parameter that should capture the
different types of possible human behaviors in a given envi-
ronment. In our experiments, we select P () as a multimodal
normal distribution. To calculate ef, we sample 0* ~ P(6).

Human Model. To get the human actions uy, for evolving
the learning dynamics g, we need a model of the suboptimal
human. Let us first consider an optimal human. We recognize
that an optimal human trying to convey their preference
parameters to the robot will always take actions uj, that
drive the robot’s estimate 6§ — 6*. Offline, we generate these
optimal actions uj, by simulating a human whose preference
parameters 0* are sampled from P(6):

wi' = min 0 — (0 + ag),0* ~ P() )

ugeU

In practice the human is imperfect and will not always take
optimal actions. Without loss of generality, we write the
actions of a suboptimal human as uy = uj, + 0, where o
represents the noise, bias or any other factor that perturbs the
human. The choice of § is up to the designer and depends on
their model of the human and environment. For example, in
our experiments we set § ~ N (e, ), where o is the variance
from the optimal actions and € is a consistent bias. Note
that the more information the designer has about the human,



Algorithm 1 StROL: Stabilized and Robust Online Learning
1: Define original learning dynamics g > see Equation (3)
2: Randomly initialize corrective term g
3: fori=1,2,--- do
4: Initialize the empty training dataset D
5 for j =1,2,--- /N do
6 Sample (x,0,6*) tuple, where 0* ~ P(6)

7: Get optimal actions uj3, using Equation (9)

8

9

Up —uj + 0
Update the training dataset D <+ (x, uy, 0*,0)
10: end for
11: Compute the loss £ using Equation (10)
12: Update § to minimize £
13: end for

the more accurate they can make this model of the human’s
actions. This in turn will lead to a corrective term that is
better suited to the current user.

Offline Learning. Equipped with the condition for conver-
gence in Equation (8), the prior over the human preferences
P(0), and a model of the suboptimal human’s actions, we
can now train ¢ offline to increase the basin of attraction
around the human preferences (see Algorithm 1). We model
g as a neural network and leverage our stability condition as
a loss function when training the network:

L= Y g3 20" g"

0* ,uy €D

(10)

where the dataset D is generated by first sampling the
human’s preference parameters 6* ~ P(6). For each of these
sampled preference parameters, we then initialize the system
in a random state x € X and use Equation (9) to generate the
optimal action u3,. Finally, we perturb these optimal actions
to get the suboptimal human actions u that we use to train
the model in Equation (10).

Example. In our experiments ¢ is a fully connected 5 layer
multi-layer perception with a rectified linear unit activation
function. The output of § is bounded by a tanh(-) activation
function such that ||g|| < ||g||. This prevents the correction
term g from overpowering the original learning dynamics
g. In Figure 2 we show an example of how our corrective
term modifies the learning dynamics to expand the basin
of attraction. We first trained § offline using our StROL
algortihm (Algorithm 1). We next measured the estimate 6
that the robot learns with either the original dynamics g or
the modified learning dynamics g = g+ g. In this example §
expands the basin of attraction so that one region of human
actions teaches the robot to avoid the laptop (§ — —1), and
the opposite region of human actions causes the robot to
ignore the laptop ( — +1).

V. SIMULATIONS

We have developed an approach to expand the basins
of attraction when learning in real-time from suboptimal
humans. Here we perform controlled simulations, and ex-
amine whether our learning and dynamics framework results

in more robust performance as compared to state-of-the-art
baselines. We consider two simulated environments: (a) a
multi-agent driving scenario where the robot car needs to
learn the human’s driving style to avoid a collision, and (b)
a household setting where the human physically corrects a
robot arm. In both environments we simulate humans whose
actions are sampled with increasing levels of noise and bias.

Independent Variables. We compare our proposed algo-
rithm (StROL) to four baselines that update a point estimate
0 using different versions of the gradient-based learning rule
in Equation (2). Gradient descent (Gradient) directly uses
Equation (2) with learning dynamics g. One-at-a-time (One)
[3] modifies these learning dynamics to account for noisy and
imprecise humans: instead of updating each element of € at
every timestep, the robot only changes the element of § that
best aligns with the human’s action. Misspecified Objective
Functions (MOF) [5] also modifies the learning dynamics in
Equation (2) to accommodate unexpected human behaviors.
Specifically, here the robot ignores — and does not learn
from — human actions uy, that are not aligned with any
of the parameters in 6. Finally, we test an ablation of our
proposed approach that we refer to as End-to-End (e2e).
In StROL the robot’s learning dynamics ¢ are the sum
of the original dynamics g and the corrective term §. We
hypothesize that g provides an important starting point (i.e.,
the designer’s knowledge) about the correct learning dynam-
ics. In e2e we test whether including g is really necessary
by setting ¢ = ¢, and training the robot’s learning rule
completely from scratch. e2e uses the exact same network
architecture for g as StROL.

Environments. We tested two settings: a multi-agent High-
way environment and a collaborative Robot environment.

In Highway a robot car is driving in front of a human car
on a two-lane highway. We simulate both vehicles in CARLO
[27]. The cars start in the left lane with the human behind the
autonomous car. Both the human and robot cars have two-
dimensional action spaces. For this simulation, we consider
three features, (a) distance between the human and robot
cars, (b) speed of the robot car and (c) heading direction
of the human car indicating whether or not the human will
change lane. The robot’s goal is to minimize the distance
travelled and avoid any collisions. To train the corrective
term g in StROL and e2e we assume a bimodal prior: either
(a) the human car will change lanes and then pass the robot
car (i.e. the human car does not care about distance but has a
preference for speed and change lane), or (b) the human will
follow the robot until the robot switches lanes (the human
car does not want to change lane and maintains a minimum
distance with the robot car). Both the agents choose their
actions using a model predictive controller [28].

In Robot a simulated human corrects a collaborative robot
arm. The robot’s action space is its 3-DoF linear end-effector
velocity. The environment includes two objects: a cup and a
plate. The robot is not sure whether it should reach or avoid
each object, and learns the human’s preferences 6 based on
the human’s corrections. When training the corrective term
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Robot setting (Bottom). In Highway, the robot car takes turns interacting with 250 simulated human cars and tries to predict whether it should change
lanes. We measure the Error between the robot’s learned estimate 6 and the simulated human’s objective 6*. In Robot, 100 simulated humans teach a 7
DoF Franka-Emika robot arm to reach for or avoid two stationary objects (also see Figure 2). We measure the Regret over the robot’s learned behavior. For
both environments we simulate humans with different levels of noise and bias. During offline training, e2e and StROL expected 10% noise in Highway
and 25% noise in Robot. The left column corresponds to this training setting. The other columns compare each method as the simulated human’s noise,
bias, and prior over 8* deviates from the training data. Error bars show SEM, and an = represents statistical significance (p < 0.05).

g we assume that the human has a bimodal prior over these
features: the human likely prefers to either (a) reach the
plate and avoid the cup or (b) go to the cup and avoid the
plate. During each interaction the simulated human corrects
the robot’s behavior over the first 5 timesteps. After each
timestep the robot updates its preferences 6 and recomputes
its trajectory to optimize for the learned reward function.

Dependent Variables. We measured the accuracy of the
robot’s learned estimate # in both environments. In Highway
we recorded the Error between the learned reward parame-
ters 6 and the true parameters 6%, where Error = ||6* —4)|.
In the competitive, multi-agent highway environment error
is especially because if the robot incorrectly estimates €, the
actions taken by the robot car can lead to a collision.

In the collaborative Robot setting, we explore whether the
robot’s learned behavior aligns with the human’s preferences.
We measure the Regret across the robot’s learned trajectory:

Regret(§) = Y R(x,0") = > R(z,0%) (11

rel* FISI)

Here £* is the optimal trajectory for reward weights 6* and
&p is the robot’s learned trajectory (i.e., the trajectory that
optimizes reward parameters 6. Regret quantifies how much
worse the robot’s trajectory is compared to the human’s ideal
trajectory: lower values indicate better performance.

Simulated Humans. We simulated humans with different
priors and increasing levels of suboptimality. More specifi-
cally, our simulated human chose actions according to:

up =uy +0, 6~N(eo), 0°~PO) (12

where o is controls the Noise and € is the Bias. When training
StROL and e2e we assumed a given level of noise and
zero bias. When training in the Highway environment we
set 0 = 10% of the magnitude of the largest action, and in
Robot we set o = 25% of the magnitude of the largest action.
Then during out experiments we performed simulations with

increasing levels of noise and bias; hence, the simulated
human’s behavior deviated from the training behavior that
our approach expected. Similarly, during training we set
the prior as a multimodal distribution, and then during our
experiments we performed tests where the human’s reward
parameters 8* were sampled from a uniform prior.

Hypothesis. We had the following two hypotheses:

H1. StROL will outperform the baselines when the human’s
behavior is similar to the training behavior.

H2. When humans act in unexpected ways, StROL will
perform better than or comparable to the baselines.

Results. Our results are summarized in Figure 3. First we
will breakdown these results for the Highway environment.
Across all trials and conditions, a repeated measures ANOVA
found that the robot’s learning algorithm had a significant
effect on learning error (F'(4,996) = 32.098, p < 0.05).
Looking at the error plots in Figure 3 (Row 1, Columns 2-3),
when the human actions at test time are similar to the human
actions during training, StROL significantly outperforms all
the baselines (p < 0.05). As the noise and bias in the
human’s actions increase (Row 1, Column 4), each algorithm
performs similarly: StROL is not significantly different from
Gradient (p = 0.051), MOF (p = 0.98), or e2e: (p = 0.80).
The same tend occurs when the simulated human’s actions
are sampled from an unexpected prior (Row 1, Column 5).
Put together, these results suggest that — when the human
driver behaves similar to our model — StROL leads to
robust robots that accurately predict 6. In the worst case
— where the human significantly deviates from the robot’s
expectations — StROL is on par with existing methods.
We found similar trends when analyzing the Robot results.
A repeated measures ANOVA with a Greenhouse-Geisser
correction (e = 0.552) revealed that the learning algorithm
had a significant effect on the regret (F(2.21,218.49) =
1287.1, p < 0.05). The plots in Figure 3 (Row 2, Columns
2-3) show that the robot’s regret is significantly lower when



the robot uses StROL (p < 0.05). As the humans become
increasingly random, the regret for StROL increases, but it is
still lower than the baselines (p < 0.05). On the other hand,
if the human tries to teach an unexpected task that is outside
the robot’s prior, StROL performs on par with Gradient
(p = 0.40), One (p = 0.30), and MOF (p = 0.31). Thus,
we find support for hypotheses H1 and H2.

VI. USER STUDY

To evaluate our approach in real-world environments,
we conducted an in-person user study where participants
interacted with a 7-DoF Franka-Emika Panda robot arm.
During each trial users attempted to teach the robot their
desired reward by applying forces and torques to the robot
arm. We compared StROL to state-of-the-art approaches that
learn online from human interventions [3], [5]. Videos of
our user study are provided here:

Independent Variables. StROL leverages Algorithm | of-
fline to modify the learning dynamics and expand the basins
of attraction. Similar to the simulations in Sections V, our
baselines include One [3] and MOF [5].

Experimental Setup. The experimental setup consisted of
a 7-Dof Franka-Emika robot arm carrying a cup across a
table with a plate and a pitcher of water (see Figure 1). The
robot started each trial by following a randomly generated
trajectory. Users then physically intervened to correct the
motion of the robot arm to teach it three different tasks. For
Task 1 users taught the robot to carry the cup to the plate,
while keeping the cup close to the table and away from the
pitcher. Task 2 was similar to Task 1, with the addition
that the users had to teach the robot to carry the cup at the
correct orientation. Finally, in Task 3 the users taught the
robot to move away from all objects while keeping the cup
upright. Task 1 had three features ( € R®) while Tasks
2 and 3 had four features () € R*). These manipulation
tasks with physical human corrections were similar to the
user study environments used in [5] and [3]. When training
StROL offline the robot’s multimodal prior included Task
1 and Task 2, but Task 3 involved a new region of reward
parameters that the learner did not expect.

Participants and Procedure. We recruited 12 participants
from the Virginia Tech community (6 female, average age
23.5 £ 3.08). Participants gave informed consent prior to the
start of the experiment under Virginia Tech IRB #22 — 755.

The participants performed all three tasks with each learn-
ing algorithm. The order of the learning algorithms was
counterbalanced using a Latin square design (e.g., some
participants started with StROL, others started with One,
etc.). Before each task the robot played the ideal trajectory
for that task (i.e., the robot showed the behavior that the
participant should teach to the robot). Between each trial the
robot reset from scratch: the robot did not carry over what
it learned about # from one trial to another.

We trained StROL offline to shape the learning dynamics.
During training we used the noisy human model in Equa-
tion (12) with ¢ = 25% of action magnitude and ¢ = 0.

The multimodal prior P(6) used during training consisted
of 3-4 modes; these modes includes the desired behaviors
for Task 1 and Task 2, but not for Task 3. We emphasize
that StROL was trained offline with simulated human data,
and then deployed online to perform zero-shot learning with
real humans and improve the overall robot performance.

Dependent Variables. We seek systems that learn the hu-
man’s reward accurately and rapidly. To analyze the learn-
ing accuracy, we measured the robot’s Regret according to
Equation (11). To analyze how rapidly the robot learned,
we measured the total amount of time the human spent
correcting the robot arm (Correction Time).

We also administered a 7-point Likert scale survey to
access the participants’ subjective responses. Our survey
questions were organized into two multi-item scales: whether
the users thought the robot learned to perform the task
correctly, and how intuitive it was for participants to teach the
robot. Every participant completed this survey 9 times: once
after they finished working with every task and algorithm.

Hypothesis. We had the following hypotheses for this study:
H3. With StROL users will teach the robot more quickly
(shorter correction time) and accurately (lower regret).

H4. Participants will find StROL to be a more intuitive
learner as compared to the baselines.

Results. We first explore hypothesis H3, and refer to
the objective results portrayed in Figure 4 (Column 1-
3). A Repeated Measures ANOVA revealed that robot’s
learning algorithm had a significant effect on the cor-
rection time (F'(2,22) = 5.602, p < 0.05) and regret
(F(1.332,14.651) = 9.108, p < 0.05). Post hoc compar-
isons showed that StROL had significantly lower correction
time and regret as compared to the baselines (p < 0.05) (see

Column 1-2). Column 3 in Figure 4 shows how a scatter
plot of how the regret for each learning algorithm varied
with the correction time. Across all participants and tasks,
we observed consistently lower regret with StROL. But with
One and MOF, there were situations where the teacher
spent a long time correcting, and the regret remained high.
For these approaches, we also observed situations where the
participants gave up teaching after a few corrections, leading
to a short correction time and high regret. This provides
support for our hypothesis H3.

Now to explore hypothesis H4, consider the Likert scale
survey in Figure 4 (Column 4). After verifying that the scales
used for the survey were reliable (Cronbach’s o > 0.7),
we grouped the responses for each scale into a combined
score. A repeated measures ANOVA (F'(2,70) = 21.301,
p < 0.05) suggested that the users perceived Our approach
to be significantly more intuitive than the baselines while
providing corrections to the robot (p < 0.05). Similarly, a
repeated measures ANOVA with a Huynh-Feldt correction
(e = 0.807, F(1.6,56.5) = 18.1, p < 0.05) revealed that
after observing the robot’s final behavior, the users thought
Our approach learned better than the baselines (p < 0.05).


https://youtu.be/uDGpkvJnY8g
https://youtu.be/uDGpkvJnY8g
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Fig. 4. Objective and subjective results from the user study in Section VI. Participants physically interacted with a 7-DoF robot arm (see Figure 1) to

teach it three different tasks. The robot used StROL or other online learning methods [3], [5] to infer the human’s reward parameters in real-time. (Left)
We plot the time users spent correcting the robot and the regret across the robot’s learned trajectory averaged over all three tasks. (Middle) For each
individual task and participant (3 tasks x 12 participants) we plot their regret vs. correction time. (Right) Finally, we report the average user ratings from
our 7-point Likert scale survey. Error bars show SEM and an * denotes statistical significance (p < 0.05).

VII. CONCLUSION

In this paper we formalize online learning from humans as
a dynamical system, and present a control theoretic perspec-
tive to enhance the convergence and robustness properties
of the robot learner. Given an initial learning rule, we
leverage Lyapunov stability analysis and offline training to
learn a corrective term which modifies the learning dynamics
and expands the basins of attraction around a multimodal
prior. In simulations and a user study we show that our
resulting algorithm (StROL) improves the robot’s learning
when interacting with suboptimal and noisy human teachers.

Limitations. Our proposed approach augmented the initial
learning dynamics g with the corrective term g to reach the
new learning dynamics g = g + g. The relative weights of
g and ¢ must be tuned by the designer. If § is unbounded,
the learned corrective term may constrain the robot learner
into the basins of attraction, preventing the human from
teaching reward parameters 6 that lie outside the robot’s
prior. Conversely, if the designer constrains g to be too small,
then StROL will not have a significant effect on the robot’s
learning. In our future work, we plan to leverage the noise
in user’s actions to tune the magnitude of g automatically.
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