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Assistive robot arms try to help their users perform everyday tasks. One way robots can provide this assistance is shared

autonomy. Within shared autonomy, both the human and robot maintain control over the robot’s motion: as the robot becomes

conident it understands what the human wants, it intervenes to automate the task. But how does the robot know these tasks

in the irst place? State-of-the-art approaches to shared autonomy often rely on prior knowledge. For instance, the robot may

need to know the human’s potential goals beforehand. During long-term interaction these methods will inevitably break

down Ð sooner or later the human will attempt to perform a task that the robot does not expect. Accordingly, in this paper

we formulate an alternate approach to shared autonomy that learns assistance from scratch. Our insight is that operators

repeat important tasks on a daily basis (e.g., opening the fridge, making cofee). Instead of relying on prior knowledge, we

therefore take advantage of these repeated interactions to learn assistive policies. We introduce SARI, an algorithm that

recognizes the human’s task, replicates similar demonstrations, and returns control when unsure. We then combine learning

with control to demonstrate that the error of our approach is uniformly ultimately bounded. We perform simulations to

support this error bound, compare our approach to imitation learning baselines, and explore its capacity to assist for an

increasing number of tasks. Finally, we conduct three user studies with industry-standard methods and shared autonomy

baselines, including a pilot test with a disabled user. Our results indicate that learning shared autonomy across repeated

interactions matches existing approaches for known tasks and outperforms baselines on new tasks. See videos of our user

studies here: https://youtu.be/3vE4omSvLvc

CCS Concepts: · Human-centered computing→ Collaborative and social computing; Accessibility.

Additional Key Words and Phrases: Human-Robot Interaction, Shared Autonomy, Imitation Learning

1 INTRODUCTION

Imagine teleoperating a wheelchair-mounted robot arm to open your refrigerator door (see Figure 1). This robot
has never interacted with your fridge before: accordingly, for the irst few times you open the fridge, you must
carefully guide the robot throughout the entire process of reaching, grabbing, and pulling the door. But after
you’ve interacted with this robot for several weeks Ð and opened your fridge many times Ð an intelligent robot
should learn to assist you. The next time you start teleoperating the arm towards your fridge, the robot should
recognize what you want and partially automate the process of opening the door.
The robot’s assistance in this working example is an instance of shared autonomy. Shared autonomy for

assistive robot arms blends the user’s inputs with autonomous actions so that both the human and the robot
contribute to the robot’s overall motion. When surveyed, disabled adults who operate assistive robots preferred
shared autonomy over either fully autonomous or fully human-guided systems [7, 23]. In practice, however,
today’s shared autonomy approaches rely on prior information about the human’s tasks. Methods such as
[3, 5, 10, 15, 28, 31, 33, 49, 50] require a pre-deined list of goals the human might want to reach: the robot
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Fig. 1. User teleoperating an assistive robot arm to open their fridge door. The robot does not have any prior knowledge

about this task; however, the human and robot have completed similar tasks many times before. Instead of making the

human guide the robot through every step of this task, we hypothesize that robot arms can learn to assist humans and share

autonomy by exploiting the repeated nature of everyday tasks.

infers the human’s most likely goal from these discrete options, and autonomously moves towards that goal.
Other approaches need demonstrations [32, 39, 45], feedback [55], or constraints [8, 9, 16, 57] that specify which
tasks the human might want to perform: the robot then maps the human’s inputs to task relevant motions, and
overrides or corrects inputs that do not align with the robot’s anticipated tasks.

These existing approaches work well when the user wants to perform a task that the robot knows a priori. But
what happens when the human inevitably wants to complete some new or unexpected task? Going back to our
working example, the robot has no prior information about opening the refrigerator. When the user teleoperates
the robot towards the fridge door, today’s assistive arms assume that the human has made a mistake: instead of
helping for the fridge task, shared autonomy guides the robot towards one of its known tasks. Even worse, the
robot remains confused Ð and provides incorrect assistance Ð no matter how many times the operator tries to
repeat the process of opening the fridge [64].
For assistive arms to be practical across long-term interaction, these robots must be capable of learning a

spectrum of new tasks. This would be extremely challenging if every task was a unique one-of that the robot
had never seen before. But our insight is that, over the many weeks, months, and years a human operator works
with their assistive robot:

Humans constantly repeat tasks that are important in their everyday life.

We emphasize that these repetitions are never exactly the same. Each time the assistive robot opens the refrigerator
it may have a diferent start position or follow a diferent trajectory. Hence, we cannot simply record and playback
the motions that the human has shown Ð instead, we need to generalize assistance across similar tasks. Applying
our insight enables assistive robot arms to learn to share autonomy by exploiting the repeated interactions

inherent within assistive applications. Here the robot remembers how the user controlled the arm to open the
fridge in the past, recognizes that the user is providing similar inputs during the current interaction, and assists
by autonomously mimicking the behavior that user previously demonstrated. Across repeated human-robot
interactions these assistive arms should learn to share autonomy for tasks that include not only discrete goals

(e.g., reaching a cup) but also continuous skills (e.g., opening a door).
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In this paper we propose, analyze, and evaluate our algorithm SARI: Shared Autonomy across Repeated
Interaction. Overall, we make the following contributions1:

Capturing Latent Intent.We formalize the problem of sharing autonomy across repeated human-robot interac-
tion. During each interaction the human has in mind some desired task: we introduce an end-to-end imitation
learning algorithm that learns to recognize the human’s current intent and provide autonomous assistance
without any pre-deined tasks or prior information.

Returning Control when Uncertain. Our approach should assist during previously seen tasks without
overriding the human whenever they try to perform a new task. We introduce a discriminator to measure the
conidence of our learned assistance so that the robot automatically returns control to the human when it is
unsure about what the human really wants.

Analyzing Stability.We combine learning with control theory to bound the error between the robot’s actual
state and the human’s desired state. We theoretically demonstrate that Ð even in the worst case Ð our approach
is uniformly ultimately bounded with respect to some radius about the human’s goal. We derive this radius as a
function of the variance in the human’s input commands and the similarity between previously learned task(s)
and the human’s current task.

Comparing to Baselines.We perform experiments with simulated human operators and real robot arms to
demonstrate how each component of our algorithm contributes to its performance. Within these controlled
experiments we compare our approach to state-of-the-art imitation learning baselines, and test our method’s
capacity to learn assistance for an increasing number of tasks.

Conducting User Studies.We assess our resulting algorithm in three separate user studies. The irst two studies
were performed with non-disabled users, and the inal study is a pilot with a disabled user who regularly operates
wheelchair-mounted robot arms. In these studies we compare our approach to shared autonomy baselines for
tasks that involve discrete goals and continuous skills. Viewed together, our results suggest that SARI enables the
robot to learn to assist for known and new tasks, leading to higher objective and subjective performance.

2 RELATED WORK

Our approach learns to share autonomy across repeated human-robot interaction without predeined tasks or
oline demonstrations. Our work is motivated by assistive applications where disabled users teleoperate robot
arms on a daily basis. Instead of forcing the user to repeatedly guide the robot throughout every step of the
motion, we learn to recognize the human’s task, imitate their previous interactions, and arbitrate control between
the human and robot.

Application – Assistive Robot Arms. Over 13% of American adults living with physical disabilities have
diiculty with at least one activity of daily living (ADL) [62]. Assistive robots Ð such as wheelchair-mounted
robot arms [1, 4, 11] Ð have the potential to help users perform these everyday tasks without relying on caregivers.
Recent work on assistive arms has focused on automating ADLs such as eating dinner [6, 18, 32, 52], getting
dressed [13, 17, 53], and manipulating household objects [12]. For suiciently simple daily tasks the disabled
adult may not require any assistance from the robot. However, our research takes inspiration from the fact that
users need assistance when performing complex tasks that are repeated on a daily basis (e.g., opening a door). It
is mentally tedious and physically burdensome for the human to precisely teleoperate the robot throughout each

1Parts of this work have been previously published in the IEEE/RSJ International Conference on Intelligent Robots and Systems [34]. Novel

contributions include the combination of learning and control (Section 5 and Appendix), experiments on SARI capacity in Section 6.4, and two

user studies in Section 7. This added material provides formal guarantees about the performance of our approach, ofers a new understanding

of how our approach works in practice, and compares our method’s performance to state-of-the-art baselines with non-disabled users and

one disabled adult.
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Fig. 2. We separate prior work on shared autonomy for assistive robot arms into two groups. (Let) Some methods are given

a discrete set of possible goals, and infer the human’s goal from these discrete options. (Right) Other methods learn to map

the human’s joystick inputs to constrained, task-relevant motions. Although both shared autonomy algorithms help this

human reach for the cups, neither can assist the human for a new, unexpected task (like opening the fridge).

step of these everyday tasks [26]. When surveyed, adults who operate assistive arms indicated that they prefer to
share autonomy with robots [7, 23].

Shared Autonomy. In shared autonomy both the human and robot arbitrate control over the robot’s motion.
We separate related research on shared autonomy into two classes of algorithms (see Figure 2). First, there are
approaches which infer the human’s goal and then partially automate the arm’s motion towards that goal. Second,
there are methods which map the human’s inputs to constrained and task-relevant actions.

Within inference works the robot is given a discrete set of possible goals the human may want to reach a priori

[3, 5, 10, 15, 21, 28, 31, 35, 43, 49, 50]. Based on the human’s teleoperation inputs so far the robot determines
which goal(s) are likely, and takes assistive actions to move towards the inferred goal(s). For example, Javdani et
al. formulate this as a partially observable Markov decision process where the human’s goal is the latent state
and the human’s teleoperation inputs are observations about that latent goal [31]. We emphasize that this class
of algorithms requires prior knowledge about the human’s tasks (i.e., the location of all the goals the human may
want to reach). In the long-term these priors will inevitably fall short: sooner or later the human will reach for a
goal that the robot did not expect, and the robot will be unable to provide assistance.

Other works on shared autonomy map the human’s joystick inputs to motions that are relevant for the current
task [8, 9, 16, 32, 39, 45, 55, 57]. When the human provides a suboptimal input (e.g., an input that moves the robot
away from its goal) the robot overrides and corrects this human’s action. For instance, Reddy et al. [55] learn
a reward function from the human and then constrain the robot to take actions with high long-term rewards,
while Broad et al. prevent the human from taking actions that deviate from the robot’s expectations. Similarly,
Losey et al. [39] map the human’s joystick inputs to latent, task-relevant robot actions that are learned from
oline task demonstrations. Overall, this class of algorithms makes sense when the user wants to perform task(s)
that the robot has learned to assist. But if the human attempts to perform a new or unexpected task, then these
constraints become counter-productive: the robot mistakenly overrides the human and may force them to perform
the wrong task.

Beyond these two classes of algorithms we highlight recent shared autonomy work that learns new tasks during
interaction [54, 64]. Here the robot starts with a discrete set of options and tries to infer the human’s current
task. If the human’s inputs do not match any of these known tasks, shared autonomy stops: the robot returns full
control to the human and the human demonstrates their new task to the robot. This task is then added to the
discrete library of options and shared autonomy restarts at the next interaction. Like [64] and [54] our approach
continually learns to assist for new tasks. However, we do not separate our approach into distinct phases for
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sharing autonomy or learning tasks. Instead, our robot learns to assist the human each time the user interacts
with the robot, regardless of whether they are completing a previously seen task or performing a new skill.

Interactive Imitation Learning. Our technical approach builds on interactive and safe imitation learning
[51, 56]. Speciically, we draw connections between shared autonomy and imitation learning techniques where
the robot and human periodically switch control. Within these settings the robot attempts to perform the task
autonomously; but at times where the human notices that the robot is making a mistake [30, 37, 42, 60], or in
states where the robot is uncertain about what it should do [27, 44, 46, 63], the human takes over and guides
the robot. Across repeated interactions the robot adds these human corrections to its training data and learns to
imitate the human’s behavior. Here we leverage a similar approach to learn to share autonomy. More speciically,
our technical approach integrates prior work on both interactive imitation learning and representation learning
[25, 36, 39, 41]. We develop representation learning to identify the space of possible tasks, and then incorporate
imitation learning to mimic how the human previously performed these tasks and provide autonomous assistance.

3 FORMALIZING SHARED AUTONOMY ACROSS REPEATED INTERACTION

Let us return to our motivating example from Figure 1 where the user is teleoperating their assistive robot arm.
Each time the human interacts with the robot, they have in mind a task they want the robot to perform: some
of these tasks are new (e.g., moving a cofee cup), while others the robot may have seen before (e.g., opening
the fridge). We represent the human’s current task as � ∈ Z, so that during interaction � , the human wants to
complete task �� . Within this paper tasks include both discrete goals and continuous skills: i.e., a task � could be
reaching the cup or opening a drawer. We test both types of tasks in our experiments. The assistive robot’s goal
is to help the human complete their current task. However, the robot does not know (a) which task the human
currently has in mind or (b) how to correctly perform that task.

Dynamics. The robot is in state � ∈ R� and takes action � ∈ R� . Within our experiments, � is the robot’s joint
position, � is the robot’s joint velocity, and the robot has dynamics:

��+1 = �� + Δ� · �� (1)

The human uses a joystick to tell the robot what action to take. Let �H be the human’s commanded action Ð i.e.,
the joint velocity corresponding to the human’s joystick input2. The robot assists the human with an autonomous

action �R , so that the overall action � is a linear blend of the human’s joystick input and the robot’s assistive
guidance [15, 28, 49]:

� = � · �R + (1 − �) · �H (2)

Here � ∈ [0, 1] arbitrates control between human and robot. When � → 0, the human always controls the robot,
and when � → 1, the robot acts autonomously.

Human. So how does the human choose inputs �H? During interaction � we assume the human has in mind a
desired task �� . We know that this task guides the human’s commanded actions; similar to prior work [31], we
accordingly write the human’s policy as �H (�H | �, �� ). This policy is the gold standard, because if we knew �H
we would know exactly how the human likes to perform each task � ∈ Z. It’s important to recognize that this
policy is highly personalized. Imagine that the current task is to reach a cofee cup at state �∗: one human might
prefer to move directly towards the cup with actions �H ∝ (�∗ − �), while another user takes a circuitous route to
stay farther away from obstacles. Our approach should personalize, and learn the policy that the current user
prefers.

2Although we use joysticks for explanation here, our algorithmic framework is not tied to any teleoperation interface. Users could alternatively

control the robot with sip-and-puf devices [28], body-machine interfaces [29], or brain-computer interfaces [48]. All of these interfaces

output a commanded action �H . To show our method’s ability to generalize, we test using both a joystick and a web-based GUI in our user

studies.
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Fig. 3. Outline of SARI, our proposed algorithmic framework for learning to share autonomy across repeated interaction.

(Let) The robot embeds the human’s behavior �� during the current interaction to a distribution over latent tasks �. (Middle)

The robot then chooses assistive actions �R conditioned on its state � and latent task �. The assistive policy �R is trained to

match the user’s behavior from previous interactions. (Right) To decide whether or not to trust this assistive action, the robot

turns to a discriminator C. The discriminator assesses whether the current interaction �� is similar to any previously seen

interaction: if so, the robot increases autonomy. In this example the robot remembers how the human has opened the fridge

in the past, and assists for that task. But when the human does something new (reaching for the cup) the robot realizes that

it does not know how to help, and arbitrates control back to the human.

Repeated Interaction. In practice the assistive robot cannot directly observe either �� or �H . Instead, the robot
observes the states that it visits and the commands that the human provides. Let � = {(�1, �1H), . . . , (�� , ��H)} be
the entire sequence of robot states and human commands that the robot observed over the course of an interaction
3. As the human and robot repeatedly collaborate and interact, the robot collects a dataset of these sequences:
D = {�1, �2, . . . , ��−1}. Notice that here we distinguish the current interaction �� . Because the robot only knows
the states and human inputs up to the present time, for the current interaction �� = {(�1, �1H), . . . , (��−1, ��−1H )}.
Robot. In settings where an assistive robot arm repeatedly interacts with a human the robot has access to four
pieces of information. The robot knows its state � , the start and end of current interaction (������� , ����� ∈ �� ), the
human’s behavior during the current interaction �� , and the events of previous interactions D. Given (�, �� ,D),
the robot needs to decide: (a) what assistance �R to provide and (b) how to arbitrate control between the human
and robot through � . We emphasize that under this formulation the robot makes no assumptions about either
the human’s underlying tasks or how to complete them Ð instead, the robot must extract this information from
previous interactions. In practice, the designer may choose to initialize the robot with some tasks before the
assistive arm encounters the current user. Under our formulation this prior information takes the form of oline
demonstrations: the designer could provide interactions Doline, so that D → D ∪Doline. Moving forward, the
robot must leverage the available data (�, �� ,D) to learn to share autonomy with the current human operator.

4 LEARNING TO SHARE AUTONOMY ACROSS REPEATED INTERACTION (SARI)

Our proposed approach is guided by the intuition that Ð if the robot recognizes the human’s behavior is similar
to a previous interaction Ð the robot can assist the human by imitating that past interaction. Take our motivating
example of opening the fridge door: the next time the human starts guiding the robot towards this door, the
robot should infer which task the human is trying to perform and then autonomously open the door just like
the human. There are three key challenges to this problem. First, the robot must recognize the human’s task ��

during the current interaction. Next, the robot should replicate any previous interactions that are similar to
this task. Finally, the robot must know when it is unsure, and return control to the human if the task is new or
unexpected. In this section we introduce an algorithm to tackle these three challenges (see Figure 3). We refer to
our method as SARI: Shared Autonomy across Repeated Interactions.

3We emphasize that these interactions can be of any length, and that there is no maximum interaction length speciied to the algorithm.
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4.1 Recognize: Embedding Interactions to a Latent Space

Our irst step is to extract the user’s high-level task �� from the robot’s low-level observations. Recall that the
human’s behavior during the current interaction (i.e., their commanded actions at each robot state) is captured in
�� . This behavior is guided by the human’s desired task: when the human wants to open the fridge, they provide
commands �H that move the robot towards that door, and when the human wants to pick up a cofee cup, they
provide a diferent set of commands to reach that cup. Accordingly, we leverage �� to recognize the underlying
task �� . More formally, we introduce an encoder:

� ∼ E( · | �� ) (3)

This encoder embeds the human’s behavior into a probability distribution over the latent space Z ⊆ R� . We will
learn the encoder model from previous human interactions as described in the following subsection (4.2).

Our encoder E is analogous to goal prediction from prior works on shared autonomy [3, 5, 10, 15, 28, 31, 49, 50].
In these prior works the robot observes the human’s current behavior �� , and then applies Bayesian inference to
predict the human’s goal �� . Our encoder E(� | �� ) accomplishes the same thing: it outputs a distribution over
tasks the human may want to complete. The diference is that Ð when using Bayesian inference Ð the robot needs
to know the set of possible tasks a priori. When training the encoder we make no such assumption. Instead, the
encoder learns a distribution over tasks using only past interactions D. However, one practical concern here is
that the robot could convince itself of its own prediction: i.e., because the robot is autonomously moving towards
a goal, the robot might think that goal is increasingly likely [31]. We avoid this loop by purposely encoding the
sequence �� . Since �� only includes the human’s action �H (and not the robot’s assistance �R ), the robot cannot
infer a latent task from its own behavior.

4.2 Replicate: Imitating the Demonstrated Behavior

As the human uses their joystick to teleoperate the robot towards the fridge door, we leverage our encoder to
recognize the human’s task. But what does the robot do once it knows that task? And how do we train the
encoder in the irst place? We address both issues by introducing a robot policy (i.e., a decoder) that maps our
task predictions into assistive robot actions:

�R = �R (�, �) (4)

The policy �R determines how the robot assists the human. We want the robot’s policy to imitate previous
demonstrations, so that if the human’s current behavior is similar to another interaction � ∈ D, the robot will
generalize the human’s actions from that previous interaction.
We accomplish this by training the encoder and policy models using the dataset of previous interactions D.

More speciically, we take snippets of the human’s behavior during previous interactions, embed those snippets
to a task prediction, and then reconstruct the human’s demonstrated behavior. For some past interaction � ∈ D,
let � = {(�1, �1H), . . . (��−1, ��−1H )} be the human’s behavior up to timestep � , and let (�� , ��H) be the human’s
behavior at timestep � . We train the encoder and policy to minimize the loss function:

L = E�∼E(· |� )








��H − �R (�� , �)









2
(5)

across the dataset D. In other words, we train the encoder from Equation (3) and policy from Equation (4) so that
Ð given a snippet of the human’s past behavior Ð we correctly predict the human’s next action. Equation (5)
encourages the robot to mimic the human, so that when the robot encounters a familiar task, the arm will
take autonomous actions that match the commands which the human previously provided. As a reminder, here
the robot is not simply saving and replaying the human’s demonstrations: because each interaction is slightly
diferent, the robot is learning a policy model �R to generalize the human’s demonstrations to nearby states.

ACM Trans. Hum.-Robot Interact.
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We contrast our policy to trajectory prediction [15, 28] or task constraints [8, 9, 39, 55, 57] from previous research
on shared autonomy. Under these approaches the robot assumes that it knows the correct way to perform each
task; e.g., if the human wants to reach for a cup, the robot assumes that it should move in a straight line towards
that goal. But we know that tasks are personalized, and diferent users will complete the same task in diferent
ways. Instead of constraining robot assistance to a pre-speciied task deinition, we therefore learn to imitate how
the current user performs each task and train �R to match the current user’s behaviors.

4.3 Return: Knowing What We Do Not Know

If the human repeats a task that the robot has seen many times before (e.g., opening the fridge), we can rely on
our model to assist the human. But what happens if the human tries to perform a new or rarely seen task? Here
we do not trust the robot’s assistive actions since this task is out of the robot’s training distribution. In general,
deciding where to arbitrate control requires a trade-of: we want the robot to take as many autonomous actions
as possible (reducing the human’s burden), but we do not want the assistive robot to over-commit to incorrect
autonomous actions and prevent the human from doing what they actually intended.

To solve this problem we take inspiration from recent work on interactive and safe imitation learning [27, 37,
46, 63]. Our objective is to determine when the robot should trust the collective output of Equations (3) and (4).
Intuitively, if the human’s behavior �� is unlike any seen behavior � ∈ D we should return control to the human.
We therefore train a discriminator C that distinguishes seen behavior from unseen behavior. Unseen behavior is
cheap to produce: we can generate this behavior by applying noisy deformations to the observed interactions
� ∈ D [40]. At run time, our discriminator outputs a scalar conidence over the human’s current behavior, which
we then utilize to arbitrate control between human and robot:

� ∝ C(�� ) (6)

In our experiments we implement this as C(�� ) = C(�� , ��H), where (�� , ��H) is the most recent state-action pair

from �� , and the output of C is normalized using a softmax function [22] to obtain the arbitration parameter
� ∈ [0, 1]. Recall that � from Equation (2) blends the robot and human actions �R and �H . If �

� deviates from
previously seen input patterns, � → 0, and the robot returns control to the human operator. By contrast, if the
discriminator recognizes �� as similar to previous experience, � → 1 and the robot arm partially automates its
motion.

Continual Learning. During each interaction the robot applies Equations (3), (4), and (6) to assist the human.
But what about between interactions, when the human is not providing any inputs to the robot? Imagine we
train our encoder, policy, and discriminator after the human has collaborated with the robot for a few minutes.
Over the next hour the human will inevitably perform new tasks. An intelligent assistive robot should also learn
these tasks and continuously adapt to the human. At the end of interaction � , we therefore add �� to dataset D.
We then retrain SARI between interactions, updating E, �R , and C. Intermittent retraining enables the robot to
continually learn and reine tasks over long-term interaction.

5 ANALYZING STABILITY WITH SARI

The SARI algorithm we introduced in Section 4 learns to recognize tasks, replicate demonstrations, and return
control. Here we apply stability theory to this learning approach. Speciically, we explore the performance of SARI
when the human attempts to complete a new, previously unseen task. We know that the robot should recognize
its uncertainty and arbitrate control back to the human. But the robot is also trying to provide assistance and
reduce the human’s burden Ð and if the robot mistakenly thinks it knows the human’s intent, our system may
override the user and autonomously perform the wrong task. For example, in Figure 3 this false positive causes
the robot to open the fridge (a previously seen skill) instead of reaching for the cup (a new and unexpected goal).

ACM Trans. Hum.-Robot Interact.
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Motivated by this failure case, we bound the error between the robot’s inal state and the human’s desired
goal. We irst start with a single degree-of-freedom system for the sake of clarity, and then extend our analysis to
�-dimensional robot arms. Overall, we prove that the inal state error of a SARI robot Ð i.e., the distance between
� and the human’s goal Ð is uniformly ultimately bounded. The radius of this bound is a function of the SARI
design parameters, the distance between the human’s new task and previously seen tasks, and the variance in
the human teleoperator’s inputs. Throughout this section we conduct experiments with simulated humans and
simulated or real robot arms: we ind that our theoretical error bounds align with the measured error in these
studies. Finally, we extract practical guidelines that designers can leverage to tune the hyperparameters of our
SARI algorithm.

5.1 Single Degree-of-Freedom System

To more clearly explain our theoretical analysis we start by considering a 1-DoF assistive robot. Here the state
� ∈ R, the human command �H ∈ R, and the robot assistance �R ∈ R are all scalars. The human is teaching this
robot to reach for static goals4. At every previous interaction the human teleoperated the robot towards a known
goal �. Now the human changes their mind and attempts to reach a new goal �∗. Returning to our motivating
example from Figure 3, perhaps the human has repeatedly teleoperated their assistive arm to open the fridge, and
now at interaction � the user wants to pick up a cup.

Robot.During past interactions the human guided the robot towards�. We assume these past human actions were
sampled from a Gaussian distribution �H ∼ N

(

(� − �), �2
D)

)

that nosily moved from � to �. Applying SARI, the

robot collects these state-action pairs into sequences � = {(�1, �1H), . . . , (�� , ��H)} and a datasetD = {�1, . . . , ��−1}.
The robot then learns to recognize and replicate the human’s behavior by minimizing Equation (5) across the
dataset D. We assume a best-case robot that learns to perfectly match the human’s past behavior such that the
robot’s assistive policy is �R ∼ N

(

(� − �), �2
D)

)

. Similarly, this best-case robot learns to return control such that
the discriminator Ð i.e., � in Equation (6) Ð is the robot’s learned policy evaluated at the human’s current action:

� (�, �H) = 1
︃

2��2
D

exp

(

−
(

�H − (� − �)
)2

2�2
D

)

(7)

We emphasize that �D captures the precision and consistency of the human’s previous interactions. Here �D → 0
indicates that the human directly guided the robot to the known goal �, while �D → ∞ indicates that the human’s
past interactions were noisy and imperfect (i.e., the human may have pressed the joystick in the wrong direction
or overshot their goal).

Human. During the current interaction the human reaches for a new, unexpected goal �∗. As before, we assume
the human follows a Gaussian distribution �H ∼ N

(

(�∗ − �), �2
H)

)

. The standard deviation �H captures the
precision of the human’s inputs when reaching for this new goal. We recognize it might be easier (or harder) for
the human to teleoperate the robot to the new goal, and thus �H does not necessarily equal �D .

Lyapunov Stability Analysis. The desired equilibrium of the human-robot system is � = �∗, i.e., we want the
robot to move to the human’s new goal. We propose the Lyapunov candidate function:

� (�) = 1

2
� (�)2, � (�) = �∗ − � (�) (8)

where � (�) ∈ R is the error between the robot’s state � and the human’s goal �∗ during the current interaction.
Taking the time derivative of Equation (8), and substituting in the robot’s dynamics from Equation (1) and

4Our analysis can also be extended to continuous skills by assuming that the human’s goal is the closest waypoint along the skill’s trajectory.
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Equation (2), we obtain:
¤� (�) = −�H (�∗ − �) + ��H (�∗ − �) − ��R (�∗ − �) (9)

Recall that �H , �R , and � are all probabilistic quantities. We take the expectation of ¤� to reach:

E[ ¤� (�)] = −(�∗ − �)2 + E[��H] (�∗ − �) − E[�] (�∗ − �) (� − �) (10)

Intuitively, we want Equation (10) to be negative so that � (�) decreases over time and the human-robot system
approaches equilibrium � (�) = 0 in expectation.

For our next steps it is critical to understand the role of the arbitration factor � . Recalling that�H ∼ N
(

(�∗ − �), �2
H)

)

,
we take the expectation of Equation (7) to reach:

E[�] = 1
︃

2� (�2
D + �2

H)
exp

(

−(�∗ − �)2
2(�2

D + �2
H)

)

(11)

This function does not always hold. From our original deinition in Equation (8) we remember that � ∈ [0, 1],
where � → 0 corresponds to full human control and � → 1 is fully autonomous behavior. In practice, designers
may further limit � ≤ ���� , ���� ∈ (0, 1], so that the human maintains a persistent minimal control over the
assistive robot [15, 49, 59]. Accordingly, we here reach two cases for our stability analysis: (a) when E[�] ≥ ����

and (b) when E[�] < ���� . Below we derive two separate stability results for both of these cases.

Theorem 1. Consider a 1-DoF robot using SARI. Given the robot’s learned policy is �R ∼ N
(

(� − �), �2
D)

)

,

the human’s current policy is �H ∼ N
(

(�∗ − �), �2
H)

)

, and E[�] ≥ ���� in Equation (11), the error is uniformly

ultimately bounded. The ultimate bound is:

|�∗ − � | > ���� · |�∗ − � | (12)

Proof. Recall that for persistent minimal control we require that � ≤ ���� . Since we have E[�] ≥ ���� and

the system cannot physically exceed ���� , we set � = ���� . Accordingly, we have that E[�] = ���� and
E[��H] = ���� · E[�H] in Equation (10). Rearranging the updated Equation (10), we ind that E[ ¤� (�)] < 0 when
Equation (12) is satisied. It follows that the human-robot system is uniformly ultimately bounded [38, 61]. See
the Appendix for more details. □

We can intuitively think of Theorem 1 as a false-positive situation: here � = ���� and the robot is fully convinced
that the human’s current goal is �. Fortunately, our SARI algorithm is designed to prevent false-positives by
returning control when the robot is faced with new or previously unseen behaviors. This leads to our second
setting where E[�] < ���� .

Theorem 2.Consider a 1-DoF robot using SARI. Given the same conditions as in Theorem 1, but nowE[�] < ���� ,
the error is uniformly ultimately bounded. The ultimate bound is:

|�∗ − � | > E[�] ·
�2
�

�2
D + �2

H
· |�∗ − �| (13)

Proof. Since E[�] < ���� we set � = � (�, �H). We now have that � depends upon �H : to compute E[��H], we
turn to the law of the unconscious statistician (LOTUS) [58]:

E[��H] =
(� − �)�2

H + (�∗ − �)�2
D√

2� (�2
D + �2

H)3/2
exp

(

− (�∗ − �)2
2(�2

D + �2
H)

)

(14)

Substituting both Equation (11) and E[��H] back into Equation (10), we ind that E[ ¤� (�)] < 0 when Equation (13)
is satisied. From this it follows that the human-robot system is uniformly ultimately bounded [38, 61]. □
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Fig. 4. Error bounds for the 1-DoF system as a function of human noise. All values are in meters. Plots generated using

Equation (12) and Equation (13) with ���� = 1. (Let) For a fixed �H = 1 we increase �D . This captures a human that

provided increasingly noisy inputs during past interactions when they were reaching for the known goal �. (Right) For a fixed

�D = 1 we increase �H . This corresponds to a human that provides increasingly noisy inputs during the current interaction

while reaching for the new goal �∗. We conclude that �D and �H have opposite efects on the theoretical error bound.

Implications for SARI.We here highlight three design guidelines that emerge from the stability analysis of a
1-DoF system. First, looking at Theorem 1, we ind that lower values of ���� lead to a decreased error |�∗ − � |.
This aligns with our expectations: when � → 0 the human always retains control and guides the robot without
any autonomous intervention. However, smaller values of ���� also limit the maximum assistance the robot
can provide, forcing the human to continually teleoperate the robot arm. Hence, choosing ���� is a trade-of
between increased error bounds and increased human efort.

Second, from Theorem 2 the precision of the human’s previous interactions (�D) and current interaction (�H)
have opposite efects on the error bound (see Figure 4). Humans that accurately moved to goal � will have lower
error bounds when reaching for the new goal; i.e., decreasing �D reduces the error |�∗ − � |. Conversely, after the
human starts moving towards the new goal �∗, noisy motions are beneicial: increasing �H reduces the error
|�∗ − � |. We tie both of these trends back to the discriminator in Equation (6). When the human’s inputs are easily
distinguished from previous interactions Ð i.e., when the human takes actions the robot has not seen before Ð
SARI returns control and the human can reach their new goal.

Finally, by combining Theorem 1 and Theorem 2 we have that the worst-case error occurs when the human’s
new goal �∗ is close to Ð but not the exact same as Ð the human’s previous goal �. As |�∗ −� | increases E[�] → 0
and the error bound in Equation (13) approaches zero. Similarly, when |�∗ − � | → 0 we have that |�∗ − � | → 0 in
both Equation (12) and Equation (13). Our results here are consistent with [20], where Fontaine et al. demonstrate
that nearby goals are an adversarial setting for existing shared autonomy algorithms.

Experimental Validation. In our analysis we have made two important assumptions about SARI. First, we
assumed that the robot’s learned policy �H ∼ N

(

(� − �), �2
D)

)

exactly replicates the human’s previous behavior.
Second, we assumed that the robot’s discriminator learns Equation (7), i.e., the discriminator outputs the likelihood
of the human’s current action under the robot’s learned policy. In Figure 5 we test both of those assumptions by
comparing the theoretical bounds from Equation (12) and Equation (13) to the experimental behavior of our SARI
algorithm.
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Fig. 5. Error bound and experimental results for a 1-DoF SARI system. All values are in meters. Here a simulated Gaussian

human provided 250 demonstrations reaching for their original goal �. These demonstrations were used to train the SARI

algorithm; at test time the simulated human reached for a series of new goals �∗ with SARI assistance. For each �∗ we
collected 10, 000 runs Ð the shaded region is the standard deviation across these runs. (Center) While reaching for the

previous goal � and new goal �∗ the human had noise �D = �H = 1. For all choices of �∗ we have that E[�] < ���� in

Equation (11), and thus the theoretical bound is Equation (13). (Right) We choose �D = �H = 0.1 and had two diferent

theoretical error bounds: When �∗ is close to � then E[�] ≥ ���� and Equation (12) applies; but as �∗ get farther from �

we have that E[�] < ���� , and thus the bound is Equation (13). The bound appears tight when E[�] < ���� and more

conservative when E[�] ≥ ���� .

To generate these plots we simulated a 1-DoF point-mass robot and human operator. The simulated human
repeatedly guided the robot to a known goal � with actions �H ∼ N

(

(�− �), �2
D)

)

, and we followed the procedure
from Section 4 to train our SARI algorithm on these interactions. The simulated human then takes actions
�H ∼ N

(

(�∗ − �), �2
H)

)

to reach a new goal �∗ while receiving SARI assistance. For values of �∗ where Theorem 2

applies (i.e., when E[�] < ���� ) we ind a close correspondence between Equation (13) and the robot’s measured
error � (�). For values of �∗ where E[�] ≥ ���� it appears that Theorem 1 becomes overly conservative: the
experimental error is consistently lower than Equation (12).

5.2 Multiple Degree-of-Freedom System

So far we have explored the stability and error bounds of a 1-DoF system. We now extend these results to the
general case. Here the state � ∈ R� , the human command �H ∈ R� , and the robot assistance �R ∈ R� are all
�-dimensional vectors. To better distinguish that we are working with vectors we will bold these symbols for
this section of the paper. Our problem setup is the same as in Section 5.1: during past interactions the human
guided the robot towards goal �, and we want to evaluate error during the current interaction when the human
is teleoperating the robot to a new, previously unseen goal �∗.

Assumptions. As before, we assume that the human’s actions during past interactions were sampled from a
multivariate Gaussian distribution �H ∼ N

(

(� − �), ΣD
)

. During the current interaction the human noisily

moves towards their new goal by following the policy �H ∼ N
(

(�∗ − �), ΣH
)

. We make two key assumptions
about SARI. (a) Our approach learns to perfectly recognize and replicate the human’s past behavior, and provides
assistive actions �R ∼ N

(

(� − �), ΣD
)

. (b) Our discriminator learns to output a scalar � that matches the robot’s
policy evaluated at the human’s action �H . These assumptions are the same as in Section 5.1. We note that
the covariance matrix ΣD captures the human’s noise during past interactions, and ΣH is the noise during the
current interaction.
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Fig. 6. Error bound and experimental results for a 3-DoF SARI system. All values are in meters, and ideally ∥�∥ = ∥�∗∥. A
simulated Gaussian human provided 25 demonstrations reaching for their original (�,�, �) goal position on the Franka robot

arm. These demonstrations were used to train the SARI algorithm; at test time the simulated human reached a series of

new goals �∗ with SARI assistance. For each �
∗ we collected 5 runs. While reaching for the previous goal � and new goal �∗

the human had noise ΣD = ΣH = 1�−4 · � , where � is the identity matrix. For choices of ∥�∗∥ close to 0.56, we have that

E[�] ≥ ���� and the bound is given by Equation (18). As ∥�∗∥ increases beyond 0.57, we find E[�] < ���� and the bound

is Equation (19).

Lyapunov Stability Analysis. We want SARI to drive the human-robot system towards the equilibrium � = �
∗.

We accordingly propose the Lyapunov candidate function:

� (�) = 1

2
∥�(�)∥2, �(�) = �

∗ − � (�) (15)

Taking the time derivative of Equation (15), plugging in the robot’s dynamics from Equation (1) and Equation (2),
and then taking the expectation, we obtain:

E[ ¤� (�)] = −��
(

� − E[��H] + E[�](� − �)
)

(16)

Our goal here is to ind a condition that ensures E[ ¤� (�)] < 0 so that the human-robot system approaches
equilibrium �(�) = 0. Importantly, the next steps of our analysis depend on the expected value of � . Given our
assumptions about SARI, for a �-dimensional system we ind that:

E[�] = 1
︁

(2�)� det Σ
exp

(

−1

2
∥�∗ − �∥2

Σ−1

)

(17)

where Σ = ΣD + ΣH is the sum of the covariance matrices. Recalling that the arbitration factor � must be
within [0, ���� ], we again reach two two cases for our stability analysis: (a) when E[�] ≥ ���� and (b) when
E[�] < ���� . Below we list the general stability results for each case.

Theorem 3. Consider a �-DoF robot using SARI. Given the robot’s learned policy is �H ∼ N
(

(� − �), ΣD
)

, the

human’s current policy is �H ∼ N
(

(�∗ − �), ΣH
)

, and E[�] ≥ ���� in Equation (17), the error is uniformly

ultimately bounded. The ultimate bound is:

∥�∗ − �∥ > ���� · ∥�∗ − �∥ (18)
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Proof. Since E[�] ≥ ���� we set � = ���� . Hence E[�] = ���� and E[��H] = ���� (�∗ − �). Substituting this

into Equation (16) and applying the CauchyśSchwarz inequality, E[ ¤� (�)] < 0 when Equation (18) is satisied.
It follows that the human-robot system is uniformly ultimately bounded [38, 61]. See our Appendix for more
details. □

Theorem 4. Given a �-DoF SARI robot under the same conditions as in Theorem 3, but now with E[�] < ���� ,
the error is uniformly ultimately bounded. The ultimate bound is:

∥�∗ − �∥ > �E[�] · ∥�∗ − �∥ (19)

where � is the maximum eigenvalue of (ΣD + ΣH)−1Σ� .

The full proof for Theorem 4 can be found in the Appendix. We highlight that if � = 1 and we have a single
DoF robot, then Equation (18) and Equation (19) are equivalent to our univariate results from Equation (12) and
Equation (13). Overall, the SARI error bounds are a function of the designer’s choice of ���� , the amount of noise
in the operator’s joystick inputs, and the distance between the previous and new goals.

Experimental Validation. To support our stability analysis we compared the theoretical error bounds from
Equation (18) and Equation (19) to the actual behavior of our SARI algorithm. We conducted this study on a
Franka Emika Robot arm with a simulated human teleoperator.
The results are shown in Figure 6. The simulated human used a Gaussian policy when reaching for �, and

we trained SARI using the state-action pairs collected from these interactions. SARI then assisted the simulated
human as they reached towards a previously unseen goal �∗. We observe a close correspondence between
Equation (19) and the measured error when E[�] < ���� . For goal positions where E[�] ≥ ���� we ind that
Equation (18) is conservative, and the actual error is less than our theoretical bound. Viewed together, our results
from Sections 5.1 and 5.2 support our stability analysis, and suggest that SARI correctly returns control when the
human reaches for new and unexpected goals.

6 SIMULATIONS

We have introduced an algorithm that learns to assist users over repeated interaction. Our algorithm (SARI)
breaks down into three parts: recognizing the task, replicating prior demonstrations, and returning control when
uncertain. In this section we perform simulations to determine how each component of SARI contributes to its
overall performance. We recognize that Ð in practice Ð human operators will use SARI to assist for multiple
everyday tasks. Accordingly, we also test the capacity of our approach, and evaluate how SARI’s performance
changes as it encounters an increasing number of goals and skills. Throughout this section we compare our
approach to state-of-the-art imitation learning baselines that also learn from repeated human-robot interaction.
We conduct these experiments on both simulated and real robot arms with simulated human operators.

Experimental Setup. For diferent simulations we implement SARI on either a 7-DoF Franka Emika robot or a
6-DoF Universal Robots UR10 robot. We test with two diferent arms to show that our approach is not hardware
speciic. A simulated user controls the robot to reach discrete goals (e.g., grasping a can) and perform continuous

skills (e.g., opening a drawer). This simulated user is not perfect: the user selects commanded actions �H with
varying levels of Gaussian white noise, similar to the noisy human models from Section 5. Please see the Appendix
for additional details on our implementation.

6.1 Do We Need Recognition?

In our irst experiment we explore whether we need two separate modules for task recognition and replication.
Recall that in Section 4.1 we introduced an encoder which embeds the current interaction �� into a latent task
prediction � ∈ Z. Within Section 4.2 we then mapped � to an assistive robot actions using �R (�, �). Here we
test whether we need this encoder in the irst place: in other words, can we obtain similar performance without
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Fig. 7. Comparison to DAgger [56], an imitation learning baseline that does not use latent embeddings. A simulated user

controls the robot for the first 0.5 seconds of the interaction: the robot must recognize the human’s task and complete the

rest of the reaching motion autonomously. We measure the final state error for each goal ater training with 3 or 5 repeated

interactions. Comparing all DAgger runs to all SARI runs, we find that the final state error is lower with SARI: � (29) = 3.215,

� < 0.05.

embedding to latent spaceZ?We consider an imitation learning baseline that directly maps the current interaction
�� to robot actions �R using a learned policy �R (�, �� ). Speciically, we compare SARI against DAgger [56].

This experiment was performed on the Franka Emika robot arm with a simulated human (see Figure 7). The
environment consisted of three potential goals: a can of soup, a notepad, or a tape measure. The human irst
teleoperated the robot along 3 or 5 demonstrations to reach each goal. We trained SARI and DAgger from these
repeated interactions such that both approaches had access to the same training data. At test time, the human
guided the robot for the irst 0.5 s of the task: based on this input, the robot had to (a) recognize which task
the human was trying to perform and (b) automate the rest of the reaching motion. We plot the resulting error
between the human’s goal and the robot’s inal state in Figure 7. Comparing the results when trained with 3 or
5 previous interactions, we ind that the robot is better able to provide assistance after additional interactions.
Regardless of whether DAgger had 3 or 5 demonstrations, however, SARI more accurately reached the human’s
goal given the same simulated human operator. We verify the signiicance of these results using a paired t-test
(� (29) = 3.215, � < 0.05) over 5 separate trials with DAgger and SARI. These results suggest that incorporating a
separate encoder for task recognition improves the robot’s assistance.

6.2 Do We Need Help Returning Control?

In our second experiment we explore the opposite end of our pipeline: determining when the robot should provide
assistance. The stability analysis from Section 5 indicates that SARI will return control to the human when the
operator is attempting to perform a new task. However, it is equally important for the robot to retain control

(and provide assistance) when it encounters a known task. Here we test if the robot will correctly recognize a
previously seen skill. Recall that SARI decides whether or not to provide assistance based on the output of the
discriminator from Section 4.3: this discriminator detects if the state-action pairs in �� are similar to previous
interactions. Instead of training a separate discriminator, one alternative is to rely on the conidence of our
learned policy itself. Here we turn to prior work on safe imitation learning where the robot samples its learned
policy multiple times at the current state, and assesses the similarity of the resulting actions �R . If all of these
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Fig. 8. Comparison to DropoutDAgger [46], a safe imitation learning baseline where the robot’s learned policy �R evaluates

its own confidence. Simulated users atempt to lit a glass. Although the robot has seen this continuous skill 5 times before,

with Dropout the robot is overly sensitive to minor deviations from previous interactions and rarely provides assistance.

actions are almost identical, the robot is conident it knows what to do; conversely, if the model outputs have
high variance, the robot is unsure. We therefore compare SARI to DropoutDAgger [46] (Dropout).
This experiment was performed on a Franka Emika robot arm with a simulated human teleoperator (see

Figure 8). The simulated human and real robot attempted to complete a continuous manipulation task where the
robot must reach and lift a glass. During test time, the human and robot shared control throughout the entire
interaction using Equation (2). The robot had seen the human perform this task in ive past interactions, and
so it should have been conident when providing assistance. To ensure proper comparison, we train SARI and
Dropout on 5 separate trials. We visualize the robot’s mean actual conidence � over these trails in Figure 8.
Interestingly, we ind that Dropout is overly sensitive to minor deviations from previous interactions, and
incorrectly returns control to the human even when the robot can still provide useful assistance. SARI remains
conident throughout this known task, suggesting that our separate discriminator better arbitrates control than
the learned policy itself. This is important in practice: human operators will never perform the same task in the
exact same way, and thus the robot must be able to remain conident on known tasks despite some operator
variability.

6.3 What if the Operator is Increasingly Noisy?

So far we have focused on the robot’s perspective, and have tested each component of our SARI approach. For our
third experiment we instead focus on the human, and explore how the behavior of the human operator afects
SARI. We consider simulated humans with diferent levels of noise as they attempt to complete previously seen
or new tasks. For previously seen tasks, we want to make sure that the robot continues to provide assistance even
as the human becomes an increasingly noisy and imperfect operator. For new tasks, we recognize that the robot
should not resist the human or force them along a previously seen trajectory. This problem becomes particularly
challenging when the human is noisy, since the robot must determine whether the imperfect human is trying to
repeat the known task or complete a new task.
This experiment was performed on a Franka Emika robot arm with a simulated human teleoperator (see

Figure 9). The human provided inputs �∗H to optimally complete the task, and we then injected Gaussian white

noise with covariance matrix ΣH = diag(�2, . . . , �2). The environment contained a previously seen skill (opening

ACM Trans. Hum.-Robot Interact.



SARI: Shared Autonomy across Repeated Interaction • 17

No Assist SARI

H
u

m
an

 E
ffo

rt 0.8

0.4

� = 0.01 � = 0.05 � = 0.07� = 0.0

0.6

1.0

0.2

H
u

m
an

 E
ffo

rt
 (

N
e
w

)

Human Effort (Previous)

0.4

0.6

0.8

1.0

0.2 0.4 1.00.6 0.8

0.2 Ours assists for repeated task,
makes new task (slightly) easier

with No Assist human
always controls robot

1.2

Noise
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previous seen skill). We find that SARI correctly recognizes and assists for this task despite noisy and imperfect human

teleoperation inputs: �H ∼ N
(

�∗H, diag(�2, . . . , �2)
)

. (Right) Simulated users alternate between a previously seen task

(opening the drawer) and a new task (reaching a cup). With No Assist both new and previous tasks take about the same

amount of Human Efort. SARI learns to partially automate the previously seen task without resisting humans when they

try to complete the new task.

a drawer) and a new goal (reaching a cup). SARI was trained with 5 repeated interactions of the drawer skill;
however, SARI had no prior experience with the cup goal. We compared our approach to a No Assist baseline
where the human directly teleoperated the robot’s end-efector without any shared autonomy. Consistent with
prior experiments, we repeat this experiment 5 times and measure the mean Human Efort across these trials. We
deine Human Efort as the amount of time the human teleoperates the robot (i.e., the total time the human is
providing joystick inputs) normalized by the average time required to complete the task. Lower values of Human
Efort signify that the robot correctly automated the motion, while higher values mean that the human had to
teleoperate the robot throughout the task.
We irst tested the previously seen drawer skill with increasing levels of human noise � (see Figure 9, left).

Interestingly, we found that SARI consistently reduced Human Efort while remaining robust to this range of � .
We then had the simulated human alternate between the new and previous tasks while varying the amount of
Gaussian white noise (see Figure 9, right). As expected, SARI made it easier for the human to repeatedly open
the drawer Ð but on the new task, SARI also correctly returned control back to the human. Performing the new
task took no more efort than the No Assist baseline; indeed, it often required less human efort. To explain this
result, we note that the start of the cup task was similar to the start of the drawer skill, and thus SARI could
automate the beginning of this motion (resulting in less Human Efort).

6.4 How Many Tasks Can We Learn?

For our inal experiment with simulated humans we explore SARI’s capacity to learn goals and skills. Remember
that our motivating application is an assistive robot arm for everyday use: over long-term interaction, this robot
will encounter many repeated tasks for which it should provide assistance. More formally, the robot observes
an increasing number of interactions � and aggregates a growing dataset D = {�1, . . . , �� }. Here we test the
performance of SARI as it is trained on this iteratively increasing dataset. We separate the experiment into two
parts: in the irst environment the robot encounters an increasing number of goals, and in the second setting the
robot must learn to assist for an increasing number of skills. Ideally the SARI robot will have the capacity to learn
assistance for all of these new tasks, without forgetting or failing to assist for previously seen tasks.
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Fig. 10. Capacity to assist for an increasing number of goals. A simulated user repeatedly reached for up to 20 randomly

generated goals. The simulated human then teleoperates the robot to reach for all of the goals it has seen so far using two

diferent methods: Ensemble [47] and SARI. SARI has separate modules to recognize, replicate, and return, while Ensemble

trains multiple replicate modules and returns control when these policies disagree. Final state error is the diference between

the robot’s final state and the human’s intended goal; the shaded region is the standard error about the mean. SARImaintains

roughly constant performance as the number of goals increases, and consistently has lower error than Ensemble.

In both parts of this experiment we compare our proposed approach (SARI) to EnsembleDAgger [47].
Ensemble is an interactive imitation learning approach that trains multiple policies on the human’s dataset.
Unlike SARI Ð which has separate models to recognize, replicate, and return Ð under Ensemble the robot only
learns policies �R (�, �� ) that map the human’s behavior directly to robot assistance. The robot trains an ensemble
of these policies and compares their outputs: when the actions �R of each policy agree the robot is conident (i.e.,
higher �), and when the actions have high variance the robot is uncertain (i.e., lower �).

Goals. To explore our method’s capacity to learn goals we simulated a Franka Emika robot arm and human
operator in PyBullet [14] (see Figure 10). At the start of the experiment the simulated human repeatedly reached
for a single goal, and the robot learned to assist for that goal. Next, the human repeatedly reached for two goals
(with new goal positions that were randomly generated), and we tested the robot’s ability to assist for both goals.
Following this pattern, the human iteratively reached for up to 20 goals; during each iteration we tested the
robot’s ability to assist for all the goals it had observed. This procedure ensures that we are capturing the robot’s
performance on previously seen goals and the new goal after training. To standardize our results, we trained 20
separate SARI and Ensemble models at every iteration. Each individual SARI model assisted the simulated
human for a single goal 5 times. For Ensemble, we had the ensemble of 20 models assist the human 100 times;
put another way, both methods reached for a given goal 100 total times.
To understand how accurately the human-robot system reached goals, we measured the Final State Error

between the human’s actual goal and the robot’s inal state. Our results are shown in Figure 10. Overall, we
observe that both SARI and Ensemble are constant as the number of goals increases: e.g., the error after learning
10 goals is similar to the error after learning all 20 goals. But while both approaches have the capacity to learn
multiple goals, we ind that SARI results in lower error across the board. Our results here are consistent with
Section 6.1, and suggest that the recognize and return modules in SARI lead to improved performance.

Skills. To explore our method’s capacity to learn continuous skills we paired a simulated Gaussian human with a
real 6-DoF UR10 arm. Here the simulated human attempted to perform kitchen tasks such as opening a drawer,
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Fig. 11. Capacity to assist for an increasing number of skills. A simulated Gaussian human teleoperated the UR10 robot

to perform up to 8 diferent kitchen skills (e.g., opening a drawer, stabbing a fruit, pushing a bowl). The simulated human

then completed these skills when assisted by either Ensemble [47] or SARI. Regret is the diference between the maximum

possible reward and the robot’s actual reward: lower values of regret indicate the human-robot system completed the skills

correctly. Shaded region indicates standard error about the mean. Unlike Figure 10, we observe that performance decreases

as the number of skills increases.

stabbing a piece of fruit, or pushing a bowl (see Figure 11). Similar to Goals, we followed an iterative process: irst
the human and robot repeatedly performed one skill, then two skills, and so on. At each iteration we evaluated
the robot’s ability to assist for all the skills it had seen so far. We had a total of 8 skills, and to remove any ordering
bias we repeated the experiment twice: once while observing skills 1 → 8, and once while observing skills 8 → 1.
To standardize our results, we trained SARI and Ensemble 20 separate times at each iteration, and evaluated
each model’s performance 5 times per skill.
We measured Regret to understand if human-robot system performed each skill correctly. Let �∗ (�) be the

maximum reward that the system can achieve on skill � ; we deine Regret as �∗ (�) −������� (�), i.e., the diference
between the best-case reward and the robot’s actual reward. Our results are plotted in Figure 11. Unlike Goals,
we ind that the system’s performance decreases as the number of skills increases. There are two reasons for
this: (a) skills are more complicated than goals, and require more assistance than just a straight point-to-point
motion and (b) the robot encounters similar states when performing diferent skills. This could lead to confusion:
if the robot observes state � when pushing the bowl and stabbing the fruit, it is unclear which task the human is
currently attempting to perform (and what assistance the robot should provide). Despite these challenges, SARI
maintains consistently lower regret when compared to the Ensemble baseline. Overall, our results from both
Goals and Skills suggest that SARI has the capacity to learn assistance for multiple tasks. We recognize that
this assistance may degrade as the robot continues to aggregate new demonstrations, particularly for skills.

7 USER STUDIES

In Sections 5 and 6 we studied the theoretical and practical performance of SARI with simulated human users. In
this section we now turn to user studies with actual participants. Recall that our target application is assistive
robot arms: we want to enable these arms to share autonomy during everyday tasks. Motivated by this application,
we conducted two in-person user studies with non-disabled participants and one pilot study with a disabled adult
who regularly operates assistive robot arms. To show that our method is not speciic to particular hardware, we
include two diferent robot arms in our experiments. In the irst study participants teleoperated a 7-DoF Franka
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Fig. 12. Experimental setup and objective results from the first part of our first user study. Here participants teleoperated

the Franka Emika robot arm to reach for two goals that were known a priori. We compared our approach (SARI) to a shared

autonomy baseline (Bayes [15]) and an industry standard mapping for assistive arm teleoperation (No Assist [2]). When

the robot has prior knowledge about the human’s potential tasks, we find that SARI learns to ofer assistance on par with

Bayes, and both methods reduce the human’s efort when compared to No Assist. Note that Bayes fails to provide helpful

assistance when the human wants to perform new, unexpected tasks (e.g., reaching the cup or opening the drawer), as shown

in Figure 13.

Emika robot arm, and in the second and third studies they teleoperated a 6-DoF Universal Robots UR10 robot arm.
The non-disabled participants used a handheld joystick interface for teleoperation (see Figures 1 and 12), while
the disabled participant used a web-based interface (see Figure 20). Additional implementation details for our user
studies can be found in the appendix. Video of our user studies is available here: https://youtu.be/3vE4omSvLvc.

7.1 Learning Discrete Goals and Continuous Skills

We start with a three part user study that explores known and new tasks as well as discrete goals and continuous
skills. Non-disabled participants started by reaching for known goals, then taught the robot new skills, and inally
returned to the original tasks5. Figures 12, 13, 14, and 15 correspond to this study. We compared our approach
(SARI) to two diferent state-of-the-art baselines: (a) direct end-efector teleoperation that is used on commercial
assistive robot arms [1, 2] and (b) an existing shared autonomy algorithm that infers the human’s goal from a
discrete set of options [15].

Independent Variables and Experimental Setup. Our irst user study was divided into the three sections
described below. Each participant completed every section.

In the irst part of the user study participants teleoperated the robot to reach for two discrete goals placed on
the table. These potential goals were known a priori, and the robot had prior experience reaching for them. Here
we compare our proposed approach (SARI) to an existing shared autonomy baseline (Bayes) [15]. For Bayes we
gave the robot prior information about the location of each goal; during interaction the robot inferred which goal
the human wanted and provided assistance towards that goal. For SARI we repeatedly teleoperated the robot to
both goals during previous, oline interactions (collecting dataset Doline). We then trained SARI on this dataset;
during interaction the robot used our approach to recognize the user’s goal and assist the human for that task.

5For video of the irst user study, also see: https://youtu.be/Plh4t3wQeIA
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Fig. 13. Representative failure case for an existing shared autonomy approach that relies on prior knowledge (Bayes [15]).

Gray circles indicate the human leading the robot, while purple and orange indicate the the robot is providing assistance.

The user atempts to complete the drawer task with end-efector control (No Assist), with Bayes, and with SARI. None of

the methods have prior knowledge about the drawer task; Bayes only knows about the notepad and tape goals, and SARI

has observed six repeated interactions for the drawer task. The user is able to successfully open the drawer by themselves

(top) and with our method (botom). With SARI we see that the user is initially leading the robot towards the drawer, but

once the robot recognizes this task, it takes charge and ofers appropriate assistance (orange circles). By contrast, Bayes

(middle) mistakes the initial trajectory as towards the notepad, and continually tries to guide the robot to this known goal.

Since both the drawer and the notepad are in front of the robot, the robot is initially able to move in the correct direction.

However, ater the user’s inputs diverge from the notepad and go towards the drawer, the robot gets stuck due to conflicting

commands.

The shared autonomy baseline is the gold standard when the human wants to complete a task the robot
already knows Ð but what happens during new tasks? In the second part of our user study participants iteratively
performed two new tasks a total of 9 times each. One task was a discrete goal (reaching a cup), while the other
was a continuous skill (opening a drawer). Here we compare SARI to a No Assist baseline. No Assist is direct
end-efector teleoperation, and is an industry standard approach for assistive robot arms (e.g., pressing right on
the joystick causes the robot to move right) [2]. The No Assist baseline never learns from interactions; but for
SARI we retrained our approach every three trials during both tasks. We expect that SARI should increasingly
assist the user as it gets more familiar with these new tasks.

One concern with our approach is that Ð as the robot continues to encounter new tasks Ð it will specialize in
just one or two recent tasks without remembering how to share autonomy for older tasks. Accordingly, in the
last part of the user study participants take the inal learned model from both new tasks and use it to revisit the
original reaching tasks. Here we compare three conditions: No Assist, where the human acts alone, SARI (task),
the robot’s learned assistance with just the user’s data from that speciic task, and SARI (all), our approach
trained on the user’s full dataset of all interactions.

Dependent Measures – Objective. Across all three parts of the user study we measured Human Efort. Human
efort is the total time the human teleoperated the robot during the task divided by the average time taken to
complete the task. Higher values of human efort indicate that the human had to guide the robot throughout its
entire motion, and lower values indicate that the robot partially automated the task.
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Fig. 14. Objective results from the second and third parts of our user study. (Let) The human teleoperates the robot to reach

for a goal it did not know about beforehand. The first few times they interact, the user must lead the robot throughout

the entire task. Ater training SARI on six repeated interactions, the robot recognizes the human’s intent and automates

the rest of the motion; by contrast, with No Assist the human always has to teleoperate the robot. (Center) Across 3 − 6

repeated interactions the robot learns to provide assistance for a new goal (reaching a cup) and skill (opening a drawer). This

assistance reduces the human’s efort as compared to completing the task alone. (Right) We take our resulting model trained

on all user demonstrations and revisit the original tasks. SARI (all) ofers similar assistance to SARI (task), a version of

our approach trained only with the user’s task-specific data. These results suggest our SARI robot has the capacity learn

assistance for new tasks without forgeting older ones.

Dependent Measures – Subjective.We administered a 7-point Likert scale survey after users completed the
study (see Figure 15). Questions were organized along ive scales: how conident users were that the robot
Recognized their objective, how helpful the robot’s behavior was (Replicate), how trustworthy users thought the
robot was (Return), whether the robot improved after successive demonstrations (Improve), and if they would
collaborate with the robot again (Prefer).

Participants and Procedure. A total of 10 members of the Virginia Tech community participated in our study
(3 female, 1 non-binary, average age 22 ± 7 years). All participants provided informed written consent prior to
the experiment under Virginia Tech IRB #20-755.

Hypotheses. We tested three main hypotheses:

H1. In cases where the robot has prior knowledge about the human’s potential goals, SARI will perform

similarly to a shared autonomy baseline

H2. In cases where the human repeatedly performs new and previously unseen tasks, SARI will learn to provide

meaningful assistance from scratch

H3. SARI remembers how to assist users on previously seen tasks even after learning new ones

Results. The results from each part of our user study are visualized in Figures 12, 13, 14, and 15. In the rest of
this subsection we summarize our main indings.
In the irst part of the user study participants completed a reaching task with Bayes (a shared autonomy

baseline) and SARI (our proposed approach). Here both methods had prior information about the potential goals:
for Bayes the robot was given both goal positions, and for SARI we recorded oline interactions reaching for
each goal. During the user study the robot had to recognize which goal the human was reaching for (i.e., either
the notepad or tape) and then assist the user while reaching for that target. Our results are shown in Figure 12.
To analyze these results we irst performed a repeated measures ANOVA, and found that the robot’s algorithm
had a signiicant efect on human efort (Notepad: � (2, 58) = 106, � < .001; Tape: � (2, 58) = 36.9, � < .001). Post
hoc comparisons revealed that both Bayes and SARI led to less human efort than No Assist, but the diferences
between Bayes and SARI were not statistically signiicant (Notepad: � = .370; Tape: � = .203). These results

ACM Trans. Hum.-Robot Interact.



SARI: Shared Autonomy across Repeated Interaction • 23

Recognize Replicate ImproveReturn Prefer

No Assist SARI

U
se

r 
R

a
ti

n
g

1

2

3

4

5

6

7

Fig. 15. Subjective results from our in-person user study. Higher ratings indicate user agreement. Overall, participants

thought SARI provided useful assistance, and they preferred this assistance to trying to complete the tasks with direct

end-efector teleoperation (No Assist). These scores were provided ater participants had completed the entire experiment,

including: completing known tasks, assisting for new tasks, and remembering old tasks.

suggest that users could reach for known, discrete goals just as easily with SARI as they could with the shared
autonomy baseline.
So SARI is on par with Bayes when the human wants to perform a known task Ð what happens when the

human wants to complete a new, unexpected task? To highlight one shortcoming of state-of-the-art shared
autonomy approaches and explain why Bayes is not a baseline in the second and third parts of our user study,
we illustrate a new task in Figure 13. Here the user attempted to open the drawer, but the robot only had prior
knowledge about the notepad and the tape. Recall that under Bayes the robot infers which discrete goal the
human is trying to reach and then assists towards that goal [15, 28, 31]. But in this scenario the robot does not
know beforehand that the human may want to open the drawer. As a result, Bayes misinterpreted the user’s
inputs and gradually became convinced that the human’s target was actually the notepad next to the drawer. This
interaction ended in a deadlock: the human constantly teleoperated the robot towards the drawer, while the robot
continually resisted and refused to return control. Note that the trajectories for SARI and No Assist are similar Ð
the main diference is that in SARI the robot takes the lead and automates the continuous skill. Moving forward
we will focus on new tasks, and will compare SARI to industry standard teleoperation mappings (No Assist).

In the second part of our user study participants repeatedly teleoperated the robot to perform new tasks.
This includes the drawer skill in Figure 13 and the cup goal in Figure 14. During the irst few interactions
SARI returned control and the user guided the robot throughout the entire task. But after training SARI on 3
and 6 repeated interactions, the robot was able to recognize and partially automate these new tasks. One user
commented that łby the end I didn’t provide any assistance and the robot continued to move in the correct direction.ž
We emphasize that Ð throughout our entire user study Ð the robot was never told what task the participant
wanted to do. Instead, the robot had to recognize the participant’s current task based on that user’s joystick inputs.
Our results from Figure 14 suggest that SARI got better at providing assistance for new tasks over repeated
interactions. For example, in the drawer skill the human’s efort was signiicantly less with SARI after 6 repeated
interactions (� (29) = 10.5, � < .001).
In the inal step of the user study we tested the capacity of our approach. We compared SARI trained on all

previous interactions to SARI trained only on interactions for the given task (see Figure 14). Intuitively, we
expected that the more specialized SARI (task) would provide the best possible performance: this method has
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Fig. 16. Three tasks used in the second user study. (Top) During Drop users picked up a lemon from the table, moved it to

the center of the pan, and then dropped it into the pan. (Middle) During Pour users picked up a can of soup, moved it to the

center of the pan, and then poured the soup in the pan. (Botom) During Stir users fetched a spatula that was placed on a

hook, moved towards the top of the pan, and then stirred the pan in a circular motion. All three tasks are continuous skills

and were not broken into smaller subtasks. Users completed each task with all three methods (No Assist, CASA, and SARI).

only seen data for the current task and therefore cannot misinterpret the human’s inputs. Our results suggest
that SARI can maintain this performance even when trained with multiple tasks. For three separate goals tasks
(cup, tape, and notepad) we irst conducted repeated measures ANOVAS, and found that the robot’s algorithm
had a signiicant efect on human efort (Cup: � (2, 38) = 51.9, � < .001; Tape: � (2, 38) = 47.7, � < .001; Notepad:
� (2, 38) = 74.1, � < .001). Although our approach consistently outperformed No Assist, diferences between
SARI (task) and SARI (all) were not statistically diferent (Cup: � = .416; Tape: � = .876; Notepad: � = .792). We
therefore conclude that Ð similar to our simulations in Figure 10 Ð SARI has the capacity to learn assistance for
new goals without forgetting how to share autonomy on previously seen tasks.

Taken together, these results support H1, H2, and H3. Our approach leveraged repeated interactions to learn
to share autonomy across new and old tasks that included discrete goals and continuous skills. Participants
generally perceived the robot’s assistance as helpful. Looking at the subjective results from Figure 15, users
thought the robot correctly recognized their intent, made the task easier to complete, and got better at providing
assistance over the course of the study.

7.2 Ofering Meaningful Assistance and Returning Control

In the previous user study we focused on the robot’s ability to learn discrete goals and continuous skills. In our
second user study we now focus on the efectiveness of the assistance ofered by the robot on known tasks and
its ability to return control on new tasks. Figures 16, 17, 18, and 19 correspond to this study. We compare our
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proposed approach with a previously seen baseline (No Assist) and a new state-of-the-art shared autonomy
algorithm (CASA) [64]. Similar to our method, CASA learns to assist users using previous demonstrations.

Experimental Setup. Each participant teleoperated a Universal Robots UR10 robot arm to complete three
continuous skills (see Figure 16): picking up a lemon and dropping it in a pan (Drop), picking up a can of soup
and pouring it in a pan (Pour), and picking up a spatula and stirring the pan using a circular motion (Stir). We
emphasize that these tasks are continuous skills that cannot be easily reduced to a series of goals. To ensure that
the human’s actions can always steer the robot, we limit the robot’s assistive action by restricting the robot’s
conidence (���� = 0.6).
The experimental procedure trades-of between teaching new tasks and then repeating known tasks. First,

users completed Drop with a robot that was pre-trained only on the Drop task6. Then Ð using the same assistive
models Ð users completed Pour: during this interaction the robot knew Drop while Pour was an unknown
task. Next, users completed Pour with a robot that was trained on demonstrations for both Drop and Pour.
Following the same pattern, users completed the new Stir task. Here the known tasks are Drop and Pour and
the unknown task is Stir. Finally users completed Stir with a model that was trained on all three tasks. Users
attempted each known and unknown task with every method three times. Overall, each individual user provided
a total of 27 demonstrations for the three known tasks and 18 demonstrations for the two unknown tasks.

Independent Variables. Participants completed each known and unknown task three times with each method.
We then compared the robot’s assistance on known tasks and its ability to return control on unknown tasks
across three diferent methods: No Assist, CASA, and SARI. No Assist did not ofer any type of assistance to
the users, while CASA and SARI learned to ofer assistance. More speciically, CASA learns cost functions and
policies for each new task using Guided Cost Learning [19], and then infers which (if any) of the tasks the human
is attempting to complete [64]. Unlike CASA, our method (SARI) directly matches the human’s past behaviors
without inferring a cost function or learning a policy to minimize that cost.

Dependent Measures – Objective. For known tasks we measured Operating Time and Opposing Time, and for
unknown tasks we plot Total Time andMean Conidence. Here Operating Time is the fraction of total time that the
human provides input to the robot and Opposing Time is the fraction of total time where the dot product between
the human’s action and the robot’s action is negative (i.e., the fraction of time where the robot’s assistance is not
aligned with the human’s commands). Total Time is the time required to complete a task in seconds, and Mean

Conidence measures the robot’s average conidence � while the human is performing a task. When the user is
performing a known task, lower Operating Time and Opposing Time indicate that the robot is ofering meaningful
assistance to the user. In the case of unknown tasks, lower Total Time and Mean Conidence indicate that the robot
realizes its uncertainly and correctly returns control to the user.

Dependent Measures – Subjective. Similar to the study in Section 7.1 we administered a 7-point Likert scale
survey (see Figure 19). Questions were organized along four scales: how conident users were that the robot
Recognized their objective, how helpful the robot’s behavior was (Replicate), how trustworthy users thought the
robot was (Return), and if they would collaborate with the robot again (Prefer). Users answered questions related
to Recognize, Replicate, and Return after completing each task with each method. At the end of the experiment
(after trying each approach) users selected which of the three algorithms they Preferred.

Participants and Procedure. We recruited 10 non-disabled members from the Virginia Tech community to
participate in our study (5 female, average age 27 ± 4 years). All participants provided informed written consent
prior to the experiment under Virginia Tech IRB #20-755. We used a within-subjects design and counterbalanced
the order of the learning algorithms between subjects. Before the user study started each participant was given

6In the interest of time, all models for SARI and CASA were trained using expert demonstrations. SARI required < 10 minutes per model to

be fully trained while CASA required over 8 hours per model.
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Fig. 17. Objective results for the known tasks in our second user study. Operating Time is the fraction of the total time

where the human provides input to the robot, and Opposing Time is the fraction of total time where the robot’s actions are

antagonistic to the human’s input. Note thatNo Assist has no Opposing Time since the in this method the human is always in

control of the robot. We find that SARI ofers the most meaningful assistance for all three known tasks by reducing both the

Operating Time and Opposing Time for the human. We performed a one way ANOVA analysis and found that the diferences

between CASA and SARI for both Operating Time and Opposing Time are significant (Drop: � (2, 87) = 368.6, � < .001; Pour:

� (2, 87) = 347.4, � < .001; Stir: � (2, 87) = 349.6, � < .001).

10 − 15 minutes to teleoperate the robot and familiarize themselves with the controls. The participants in this
user study did not take part in the previous experiment from Section 7.1.

Hypotheses. We tested two main hypotheses:

H4. For previously seen tasks, SARI will better assist than CASA or No Assist

H5. For new tasks, SARI will better return control to humans than CASA

Results – Objective. The objective results from our second user study are shown in Figures 17, 18 and 19. We
separate our indings into two categories: performance when the robot has seen the task before (known) and
performance when the task is new (unknown).

Known tasks: Results for the known tasks are shown in Figure 17. We performed a one way ANOVA to analyze
these results. Post hoc comparisons revealed that across all three tasks SARI reduced the Operating Time

signiicantly more than No Assist or CASA (Drop: � (2, 87) = 311.0, � < .001; Pour: � (2, 87) = 278.7, � < .001;
Stir: � (2, 87) = 95.3, � < .001). We also observed that the Opposing Time for SARI across all three tasks
was signiicantly lower than CASA (Drop: � (2, 87) = 368.6, � < .001; Pour: � (2, 87) = 347.4, � < .001; Stir:
� (2, 87) = 349.6, � < .001). Note that No Assist never opposes since the human is always in control.

Unknown tasks: Results for the unknown tasks are shown in Figure 18. Remember that participants irst performed
Pourwhile the robot had only seenDrop, and then they irst performed Stirwhile the robot was trained onDrop

and Pour. Hence, here we do not expect the robot to assist the human: instead, the robot should recognize that the
human is completing a new task and return control to the operator. We performed a one way ANOVA to analyze
our results and determine whether the robot correctly returned control. We found that CASA increased the Total
Time required to complete both tasks (Pour: � (2, 87) = 16.6, � < .001; Stir: � (2, 87) = 25.437, � < .001). CASA
increased the total time because this robot mistakenly thought the human was attempting to perform a known
task rather than the unknown task. See theMean Conidence: the maximum allowed mean conidence was 0.6, and
CASA is close to this maximum conidence for both tasks (i.e., the CASA robot was almost entirely convinced it
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Fig. 18. Objective results for the unknown tasks in our second user study.Mean Confidence is the robot’s average confidence

� . Since these tasks are new to the robot, the robot should not be confident: ideally both Total Time andMean Confidence

will be minimized. No Assist always has zero confidence since the human is always in control of this robot. We observe that

CASA significantly increased the Total Time required by the human to complete these tasks (Pour: � (2, 87) = 16.6, � < .001;

Stir: � (2, 87) = 25.437, � < .001). This increase in Total Time can be atributed to the high Mean Confidence CASA maintains

(i.e., CASA incorrectly thinks it knows the task). By contrast, the SARI robot recognizes that it does not know the human’s

current task and correctly returns control so the human can act without interference.

was performing a known task). Using paired �-tests we found that the mean conidence was signiicantly lower
for SARI as compared to CASA (Pour: � (29) = 40.928, � < .001, Stir: � (29) = 40.928, � < .001).

Results – Subjective.We display the user’s subjective responses to each algorithm in Figure 19. After conirming
that the scales were reliable (Cronbach’s � > 0.7), we grouped each scale into a single combined score and
performed a one-way ANOVA on the results. We observe that across all three tasks users reported that SARI
best recognized their task (� (2, 177) = 275.6, � < .001) and replicated their demonstrations to ofer the most
meaningful assistance (� (2, 177) = 406.8, � < .001). When it came to returning control, No Assist was the gold
standard; remember that for this method the human was always in control. However, here SARI was rated as
signiicantly better than CASA (� (2, 117) = 102.7, � < .001). Overall, 9 of the 10 participants indicated that SARI
was their preferred method for sharing autonomy with the robot.

7.3 Assisting Users with Disabilities

In our third and inal pilot study we explore how our approach assists a disabled user who operates robot arms on
a daily basis. Similar to Section 7.2, the participant interacted with a robot arm that either (a) did not provide any
assistance, (b) assisted using the state-of-the-art CASA approach [64], or (c) assisted using our proposed SARI
algorithm. This pilot study was conducted remotely: the participant observed the robot in real-time through a
live video feed, and remotely teleoperated the robot using a web-based GUI (see Figure 20).

Experimental Setup and Independent Variables. The participant teleoperated the Universal Robots UR10
robot arm to perform two tasks from Section 7.2: Drop and Pour. The robot had expert demonstrations for both
tasks (i.e., both tasks were known by the robot). Over a one hour session we collected a total of 6 demonstrations
across all tasks and methods from the participant. We compared the efectiveness of the robot’s assistance when
using No Assist, CASA, or SARI.
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Fig. 19. Subjective results for our second in-person user study. Similar to Figure 15, higher ratings indicate user agreement.

Overall, participants found that SARI was able to beter recognize their task and ofer meaningful assistance. Additionally, a

majority of users preferred using SARI over both CASA and No Assist. Scores for Recognize, Replicate, and Return were

obtained ater participants completed each task with each method. For Prefer we asked participants to select their favorite

algorithm at the end of the experiment: 9 out of 10 users chose SARI. All diferences shown here are statistically significant

(� < .01)

Dependent Measures.We measured Operating Time, Opposing Time, andMean Conidence. Recall that Operating
Time is the the fraction of total time where the human is providing inputs to the robot, Opposing Time is the
fraction of total time where the human and robot actions are in opposite directions, and Mean Conidence is the
robot’s average conidence that it should provide assistance (�). Since the robot is performing known tasks, an
ideal system will maintain high Mean Conidence, partially automate the motion, and reduce Operating Time and
Opposing Time.

Participants and Procedure. We recruited one remote participant for this pilot study. The participant provided
informed written consent under Virginia Tech #20-755. Since this user study was conducted online, the participant
used a web-based GUI to control the robot (see Figure 20). This GUI includes a table of buttons to control the
position and orientation of the end-efector: we designed the GUI to mimic online interfaces for commercial
wheelchair-mounted robot arms [2]. The participant moved their cursor and pressed buttons on the GUI using a
joystick that was integrated with their wheelchair. For the irst 15 minutes of the experiment the participant
familiarized themselves with our robot, environment, and controls. During this time we also worked with the
participant to ind the best camera placements.

Results. Figure 20 presents our results. Remember that the robot is performing a task that it has seen before;
ideally the assistive robot will realize this is a known task and help the user. We observed that Ð similar to the
previous user study Ð both CASA and SARI reduced the Operating Time. However, we also noticed that across
both tasks SARI provided better assistance by maintaining high Mean Conidence and keeping the Opposing Time

to a minimum. While we only had one participant in this pilot study, the results obtained suggest that SARI can
ofer meaningful assistance to our target population without requiring pre-deined tasks.
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Fig. 20. Experimental setup and objective results for our remote user study with one disabled participant. (Let) The participant

used a web-based GUI to teleoperate the robot. The GUI was designed to mimic commercial interfaces [2] and enabled

the user to control the robot’s end-efector velocity. (Center) We show one of the two camera angles that were streamed

in real-time to the remote participant. (Right) Over the course of a one hour session the user completed Drop and Pour

tasks (see Figure 16). Across both tasks SARI reduced the Operating Time by maintaining a highMean Confidence and low

Opposing Time. These results suggest that SARI can assist adults who regularly use wheelchair-mounted robot arms.

8 CONCLUSION

State-of-the-art shared autonomy algorithms often rely on prior knowledge: e.g., the robot needs to know all
of the human’s potential tasks a priori, or the robot is constrained to actions that assist for previously seen
tasks. In this paper we introduce an alternate framework for shared autonomy that leverages the repeated nature
of everyday human-robot interaction. Our insight is that Ð if an assistive arm is teleoperated through similar
tasks many times Ð the robot should learn to partially automate those tasks. Our approach (SARI) contains
separate models that (a) learn to recognize the human’s current task, (b) replicate the human’s behavior from
past task-related interactions, and (c) return control back to the human when the robot is unsure. We leveraged
stability analysis that combines learning with control to demonstrate that the error between the human’s goal
and the SARI robot is uniformly ultimately bounded. We then conducted simulations to support our theoretical
error bounds, compare our approach to interactive imitation learning baselines, and explore the capacity of
SARI to learn new tasks. Finally, we performed three user studies to demonstrate that SARI assists for both
discrete goals and continuous skills, shows greater ability to recognize tasks and return control, and provides
meaningful assistance to users with disabilities. Overall, our theoretical and experimental analysis suggests that
SARI personalizes to the current user, and can learn to share autonomy for the tasks that user often performs.

Limitations. So far we have focused on how assistive robot arms can adapt to their human users. But as the
robot arm gets better at sharing autonomy, the human will also co-adapt and modify their own teleoperation
strategy. For example, once the human is conident the robot recognizes their current task, the user may stop
providing joystick inputs and rely on the robot entirely. One approach to circumvent this issue is by only storing
interactions if the human provides corrective actions. However, this co-adaptation is not explicitly accounted for
in our approach.
Another potential limitation of SARI may be its capacity. From Section 6.4 we recognize that the robot’s

assistance decreases as the number of skills increases. More generally, it may not be feasible for a single model to
learn assistance for all of the human’s everyday tasks. One practical solution is switching models depending on
context. For example, we could train one instance of SARI to assist for cooking tasks, and another instance of
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SARI to assist for dining tasks. During run-time the robot selects which SARI models to use based on the current
context (e.g., cooking or eating).

9 APPENDIX

9.1 Details for Error Bounds from Section 5

Below we provide additional details for the error bounds that were presented in Section 5.

Derivation of Equation 11. From Equation (7) we know that the arbitration constant � (�, �H) is deined as:

� (�, �H) = 1
︃

2��2
D

exp

(

−
(

�H − (� − �)
)2

2�2
D

)

Taking into consideration that �H ∼ N
(

(�∗ − �), �2
H)

)

and recalling that the law of the unconscious statis-
tician (LOTUS) [58] states that for a function �(� ) of a random variable � , the expected value E[�(� )] =
∫ ∞
−∞ �(�) �� (�) �� , where �� (�) is the probability density function of � . We take the expectation of Equation (7)
and substitute the above to obtain:
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Upon further simpliication we obtain:

E[�] = 1
︃

2� (�2
D + �2

H)
exp

(

−(�∗ − �)2
2(�2

D + �2
H)

)

Derivation of Equation 14. When taking the expectation of E[��H], we utilize LOTUS to obtain:

E[��H] =
∫ ∞
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Upon simpliication we obtain:

E[��H] = 1

2��D · �H
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�H · exp
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By solving for the integral in Equation (21) we obtain Equation (14).

Derivation of Equation 17. Recall that:

� (�, �H) = 1

(2�)�/2 |�D |1/2
exp

(

−1

2
· (�H − (�∗ − �))��−1

D (�H − (�∗ − �))
)

(22)

We rewrite Equation (22) using the canonical parameterization as:

� (�, �H) = exp

(

�D + ��D · �H − 1

2
�
�
H
�D�H

)

where �D = �
−1
D , �D = �

−1
D (�∗ − �), and �D = − 1

2 (� log 2� − log |�D | + �
�
D�

−1
D�D). To compute E(�), we

utilize LOTUS:
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E[�] =
∫ ∞
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Upon further simpliication we obtain:

E[�] =
∫ ∞

−∞
exp

(

�� + �� − � + � + �� �� −
1

2
�
�
�
���

)

where � = �� +�� ,� = �� +�� , and � = − 1
2 (� log 2�− log |�| +���

−1
�). With substitution and simpliication

we obtain:

E[�] = 1

(2�)�/2 |�D + �H |1/2
exp
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−1

2
(� − �

∗)� (�D + �H)−1 (� − �
∗)

)

(23)

Equation (23) can be simpliied and rewritten as Equation (17).

Proof for Theorem 4. Because we have assumed that E[�] < ���� , we set � = � (�, �H). Note that � depends
upon �H . We transform � (�, �H) using the canonical parameterization and apply LOTUS to compute the
expectation as:

E[��H] =
∫ ∞

−∞
�H exp

(

�D + ��D · �H − 1

2
�
�
H
�D�H

)

· exp
(

�H + ��
H

· �H − 1

2
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�
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(24)

Upon further simpliication and reparameterization we obtain:

E[��H] = (�� + �� )−1 (�� (�∗ − �) + �� (� − �))
(2�)�/2 |�� + �� |1/2

exp
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(25)

This can be rewritten as:

E[��H] =
Σ
−1 (

ΣD (�∗ − �) + ΣH (� − �)
)

︁

(2�)� det Σ
· exp

(

−1

2
∥�∗ − �∥2

Σ−1

)

(26)

where Σ = ΣD + ΣH . Substituting Equation (17) and Equation (26) back into Equation (16), we have E[ ¤� (�)] < 0
when:

∥�∗ − �∥2 > E[�] · (�∗ − �)� Σ−1
ΣD (�∗ − �) (27)

Here we apply the CauchyśSchwarz inequality to obtain:

∥�∗ − �∥2 > E[�] ∥�∗ − �∥ · ∥Σ−1
ΣD (�∗ − �)∥ (28)

From the spectral theorem we know that ∥�� ∥ ≤ ���� (�)∥� ∥, where ���� (�) is the largest eigenvalue of the
positive semideinite matrix �. We substitute this inequality in Equation (26) to obtain a more relaxed constraint.
Speciically, we ind that E[ ¤� (�)] < 0 if the following inequality holds:

∥�∗ − �∥2 > ∥�∗ − �∥ · �E[�] · ∥�∗ − �∥ (29)

where � is the maximum eigenvalue of Σ−1
Σ� . Rearranging this result yields Equation (19). We conclude that

E[ ¤� (�)] < 0 when Equation (19) is satisied, and it therefore follows that the human-robot system is uniformly
ultimately bounded.

Ultimate Bounds. In our proofs for Theorems 1ś4 we have shown that the SARI system is uniformly ultimately
bounded, andwe have listed the ultimate bounds. However, we have not formally demonstratedwhy Equations (12),
(13), (18), and (19) are the ultimate bounds. Here we provide a more rigorous derivation for these results. We
focus on Theorem 4, but the same approach applies to each of our Theorems.
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Recall from Equation (15) that the Lyapunov candidate function depends on the error �, and remember that
� = �

∗ − �. Let �1 and �2 be two class � functions such that:

�1
(

∥�∥
)

≤ � (�) ≤ �2
(

∥�∥
)

(30)

Here the ultimate bound on error � can be taken as [38]:

� = �−1
1

(

�2 (�)
)

(31)

where � > 0 is selected such that E[ ¤� (�)] < 0 for all ∥�∥ > �. Looking back at Equation (19) and the previous
proof from the Appendix, we have already identiied � = �E[�] · ∥�∗ − �∥. We now propose �1 = �2 =

1
2 ∥�∥2.

These choices are valid because (a) they satisfy Equation (30) and (b) they are class � functions. Plugging �, �1,
and �2 back into Equation (31), the ultimate bound is:

� = �E[�] · ∥�∗ − �∥ (32)

Intuitively, this result means that the expected error between the human’s new goal �∗ and the robot’s state �
will eventually become smaller than �, and will remain smaller than � for the rest of the interaction [61].

9.2 Implementation Details

Our code can be found here: https://github.com/VT-Collab/repeated-shared-autonomy.

Data collection. Across all three user studies we record the robot’s state and the human’s actions. Depending
on the task, we collect the robot’s joint positions, robot’s Cartesian position, state of the gripper, current mode of
teleoperation (rotation or translation), and current mode of operation (fast or slow mode). In-person users utilized
the joysticks on a Logitech Gamepad F310 controller to provide their inputs. Since the controller is equipped
with only two joysticks, users can toggle between translational and rotational inputs using one of the buttons on
the controller. Remote users used a web-based GUI that had individual buttons that could be used to command
translational and rotational velocities. This GUI also had additional buttons to open and close the gripper, and to
speed up or slow down the robot. The inputs from the joystick and the web GUI are converted into a 6-D vector
of velocity inputs and stored as the human’s current action.

Data augmentation.We augment the data we receive from the demonstrations using Gaussian noise. We create
5 additional samples for each sample we collect by injecting Gaussian noise with zero mean and a small variance.
We use this augmented data to train our method as well as all the baselines that require human demonstrations
for training.

Deformations for the discriminator. To create samples that represent unseen behavior for our discriminator,
we randomly apply a small force to the demonstrations we collected from the human. This force alters the
start, end and the shape of the initial trajectory. We use previous work by [40] to generate these deformations.
Additional details on our implementation can be found in our code.

Network architecture. We use fully connected networks for the encoder, decoder and the discriminator in
our method. While we varied the number of hidden layers and the number of neurons in each layer throughout
the project, we found the best results when our encoder consisted of 5 hidden layers, the decoder consisted
of 4 hidden layers, and the discriminator consisted of 4 hidden layers. Additional information on our speciic
implementations can be found in the code repository.

Computational Requirements. Throughout the project we use various versions of Pytorch and Python in
our environment. Most of our experiments were run on an Intel PC with an i7-8559U processor and 32GB of
RAM. We store the human interaction data as Python pickle iles and each interaction requires 72kB of memory.
Our Pytorch models were also saved as pickle iles and required 42.7kB of memory. No GPU was used for our
experiments.
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Baselines. For DAgger-based baselines we use fully connected networks similar to our method. For DropoutDag-
ger we use dropout probability of 0.1 and for EnsembleDagger we train and use an ensemble of 20 models. To
obtain the network’s conidence (�) we scale the variance within the model’s action for DropoutDagger and
variance between models for EnsembleDagger with a constant value. This constant is obtained by tuning the
robot’s performance while performing a learned task. For CASA we use a combination of Guided Cost Learning
(GCL) and Soft-Actor Critic (SAC) [24]. We implement SAC in-house and modify a pre-existing repository for
training using GCL. The original repository can be found here: https://github.com/NinaWie/guided-cost-learning,
and our speciic implementation can be found in our code repository.
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